SN74LVT8996-EP

正在供貨

增強型產品 3.3V Abt 10 位多點可尋址 Ieee Std 1149.1 Tap 收發器

產品詳情

Protocols JTAG Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
Protocols JTAG Rating HiRel Enhanced Product Operating temperature range (°C) -40 to 85
TSSOP (PW) 24 49.92 mm2 7.8 x 6.4
  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • Member of the Texas Instruments (TI) Broad Family of Testability Products Supporting IEEE Std 1149.1-1990 (JTAG) Test Access Port (TAP) and Boundary-Scan Architecture
  • Extends Scan Access From Board Level to Higher Levels of System Integration
  • Promotes Reuse of Lower-Level Chip/Board) Tests in System Environment
  • While Powered at 3.3 V, Both the Primary and Secondary TAPs Are Fully 5-V Tolerant for Interfacing to 5-V and/or 3.3-V Masters and Targets
  • Switch-Based Architecture Allows Direct Connect of Primary TAP to Secondary TAP
  • Primary TAP Is Multidrop for Minimal Use of Backplane Wiring Channels
  • Shadow Protocols Can Occur in Any of Test-Logic-Reset, Run-Test/Idle, Pause-DR, and Pause-IR TAP States to Provide for Board-to-Board Test and Built-In Self-Test
  • Simple Addressing (Shadow) Protocol Is Received/Acknowledged on Primary TAP
  • 10-Bit Address Space Provides for up to 1021 User-Specified Board Addresses
  • Bypass (BYP)\ Pin Forces Primary-to-Secondary Connection Without Use of Shadow Protocols
  • Connect (CON)\ Pin Provides Indication of Primary-to-Secondary Connection
  • High-Drive Outputs (–32-mA IOH, 64-mA IOL) Support Backplane Interface at Primary and High Fanout at Secondary
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
SCOPE is a trademark of Texas Instruments.

  • Controlled Baseline
    • One Assembly/Test Site, One Fabrication Site
  • Enhanced Diminishing Manufacturing Sources (DMS) Support
  • Enhanced Product-Change Notification
  • Qualification Pedigree
  • Member of the Texas Instruments (TI) Broad Family of Testability Products Supporting IEEE Std 1149.1-1990 (JTAG) Test Access Port (TAP) and Boundary-Scan Architecture
  • Extends Scan Access From Board Level to Higher Levels of System Integration
  • Promotes Reuse of Lower-Level Chip/Board) Tests in System Environment
  • While Powered at 3.3 V, Both the Primary and Secondary TAPs Are Fully 5-V Tolerant for Interfacing to 5-V and/or 3.3-V Masters and Targets
  • Switch-Based Architecture Allows Direct Connect of Primary TAP to Secondary TAP
  • Primary TAP Is Multidrop for Minimal Use of Backplane Wiring Channels
  • Shadow Protocols Can Occur in Any of Test-Logic-Reset, Run-Test/Idle, Pause-DR, and Pause-IR TAP States to Provide for Board-to-Board Test and Built-In Self-Test
  • Simple Addressing (Shadow) Protocol Is Received/Acknowledged on Primary TAP
  • 10-Bit Address Space Provides for up to 1021 User-Specified Board Addresses
  • Bypass (BYP)\ Pin Forces Primary-to-Secondary Connection Without Use of Shadow Protocols
  • Connect (CON)\ Pin Provides Indication of Primary-to-Secondary Connection
  • High-Drive Outputs (–32-mA IOH, 64-mA IOL) Support Backplane Interface at Primary and High Fanout at Secondary
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
SCOPE is a trademark of Texas Instruments.

The SN74LVT8996 10-bit addressable scan port (ASP) is a member of the Texas Instruments SCOPE™ testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit assemblies. Unlike most SCOPE™ devices, the ASP is not a boundary-scannable device, rather, it applies TI’s addressable-shadow-port technology to the IEEE Std 1149.1-1990 (JTAG) test access port (TAP) to extend scan access beyond the board level.

This device is functionally equivalent to the ’ABT8996 ASPs. Additionally, it is designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to interface to 5-V masters and/or targets.

Conceptually, the ASP is a simple switch that can be used to directly connect a set of multidrop primary TAP signals to a set of secondary TAP signals - for example, to interface backplane TAP signals to a board-level TAP. The ASP provides all signal buffering that might be required at these two interfaces. When primary and secondary TAPs are connected, only a moderate propagation delay is introduced - no storage/retiming elements are inserted. This minimizes the need for reformatting board-level test vectors for in-system use.

Most operations of the ASP are synchronous to the primary test clock (PTCK) input. PTCK is always buffered directly onto the secondary test clock (STCK) output.

Upon power up of the device, the ASP assumes a condition in which the primary TAP is disconnected from the secondary TAP (unless the bypass signal is used, as below). This reset condition also can be entered by the assertion of the primary test reset (PTRST)\ input or by use of shadow protocol. PTRST\ is always buffered directly onto the secondary test reset (STRST)\ output, ensuring that the ASP and its associated secondary TAP can be reset simultaneously.

When connected, the primary test data input (PTDI) and primary test mode select (PTMS) input are buffered onto the secondary test data output (STDO) and secondary test mode select (STMS) output, respectively, while the secondary test data input (STDI) is buffered onto the primary test data output (PTDO). When disconnected, STDO is at high impedance, while PTDO is at high impedance, except during acknowledgment of a shadow protocol. Upon disconnect of the secondary TAP, STMS holds its last low or high level, allowing the secondary TAP to be held in its last stable state. Upon reset of the ASP, STMS is high, allowing the secondary TAP to be synchronously reset to the Test-Logic-Reset state.

In system, primary-to-secondary connection is based on shadow protocols that are received and acknowledged on PTDI and PTDO, respectively. These protocols can occur in any of the stable TAP states other than Shift-DR or Shift-IR (i.e., Test-Logic-Reset, Run-Test/Idle, Pause-DR or Pause-IR). The essential nature of the protocols is to receive/transmit an address via a serial bit-pair signaling scheme. When an address is received serially at PTDI that matches that at the parallel address inputs (A9-A0), the ASP serially retransmits its address at PTDO as an acknowledgment and then assumes the connected (ON) status, as above. If the received address does not match that at the address inputs, the ASP immediately assumes the disconnected (OFF) status without acknowledgment.

The ASP also supports three dedicated addresses that can be received globally (that is, to which all ASPs respond) during shadow protocols. Receipt of the dedicated disconnect address (DSA) causes the ASP to disconnect in the same fashion as a nonmatching address. Reservation of this address for global use ensures that at least one address is available to disconnect all receiving ASPs. The DSA is especially useful when the secondary TAPs of multiple ASPs are to be left in different stable states. Receipt of the reset address (RSA) causes the ASP to assume the reset condition, as above. Receipt of the test-synchronization address (TSA) causes the ASP to assume a connect status (MULTICAST) in which PTDO is at high impedance but the connections from PTMS to STMS and PTDI to STDO are maintained to allow simultaneous operation of the secondary TAPs of multiple ASPs. This is useful for multicast TAP-state movement, simultaneous test operation (such as in Run-Test/Idle state), and scanning of common test data into multiple like scan chains. The TSA is valid only when received in the Pause-DR or Pause-IR TAP states.

Alternatively, primary-to-secondary connection can be selected by assertion of a low level at the bypass (BYP)\ input. This operation is asynchronous to PTCK and is independent of PTRST\ and/or power-up reset. This bypassing feature is especially useful in the board-test environment, since it allows the board-level automated test equipment (ATE) to treat the ASP as a simple transceiver. When the BYP\ input is high, the ASP is free to respond to shadow protocols. Otherwise, when BYP is low, shadow protocols are ignored.

Whether the connected status is achieved by use of shadow protocol or by use of BYP\, this status is indicated by a low level at the connect (CON)\ output. Likewise, when the secondary TAP is disconnected from the primary TAP, the CON\ output is high.

The SN74LVT8996 10-bit addressable scan port (ASP) is a member of the Texas Instruments SCOPE™ testability integrated-circuit family. This family of devices supports IEEE Std 1149.1-1990 boundary scan to facilitate testing of complex circuit assemblies. Unlike most SCOPE™ devices, the ASP is not a boundary-scannable device, rather, it applies TI’s addressable-shadow-port technology to the IEEE Std 1149.1-1990 (JTAG) test access port (TAP) to extend scan access beyond the board level.

This device is functionally equivalent to the ’ABT8996 ASPs. Additionally, it is designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to interface to 5-V masters and/or targets.

Conceptually, the ASP is a simple switch that can be used to directly connect a set of multidrop primary TAP signals to a set of secondary TAP signals - for example, to interface backplane TAP signals to a board-level TAP. The ASP provides all signal buffering that might be required at these two interfaces. When primary and secondary TAPs are connected, only a moderate propagation delay is introduced - no storage/retiming elements are inserted. This minimizes the need for reformatting board-level test vectors for in-system use.

Most operations of the ASP are synchronous to the primary test clock (PTCK) input. PTCK is always buffered directly onto the secondary test clock (STCK) output.

Upon power up of the device, the ASP assumes a condition in which the primary TAP is disconnected from the secondary TAP (unless the bypass signal is used, as below). This reset condition also can be entered by the assertion of the primary test reset (PTRST)\ input or by use of shadow protocol. PTRST\ is always buffered directly onto the secondary test reset (STRST)\ output, ensuring that the ASP and its associated secondary TAP can be reset simultaneously.

When connected, the primary test data input (PTDI) and primary test mode select (PTMS) input are buffered onto the secondary test data output (STDO) and secondary test mode select (STMS) output, respectively, while the secondary test data input (STDI) is buffered onto the primary test data output (PTDO). When disconnected, STDO is at high impedance, while PTDO is at high impedance, except during acknowledgment of a shadow protocol. Upon disconnect of the secondary TAP, STMS holds its last low or high level, allowing the secondary TAP to be held in its last stable state. Upon reset of the ASP, STMS is high, allowing the secondary TAP to be synchronously reset to the Test-Logic-Reset state.

In system, primary-to-secondary connection is based on shadow protocols that are received and acknowledged on PTDI and PTDO, respectively. These protocols can occur in any of the stable TAP states other than Shift-DR or Shift-IR (i.e., Test-Logic-Reset, Run-Test/Idle, Pause-DR or Pause-IR). The essential nature of the protocols is to receive/transmit an address via a serial bit-pair signaling scheme. When an address is received serially at PTDI that matches that at the parallel address inputs (A9-A0), the ASP serially retransmits its address at PTDO as an acknowledgment and then assumes the connected (ON) status, as above. If the received address does not match that at the address inputs, the ASP immediately assumes the disconnected (OFF) status without acknowledgment.

The ASP also supports three dedicated addresses that can be received globally (that is, to which all ASPs respond) during shadow protocols. Receipt of the dedicated disconnect address (DSA) causes the ASP to disconnect in the same fashion as a nonmatching address. Reservation of this address for global use ensures that at least one address is available to disconnect all receiving ASPs. The DSA is especially useful when the secondary TAPs of multiple ASPs are to be left in different stable states. Receipt of the reset address (RSA) causes the ASP to assume the reset condition, as above. Receipt of the test-synchronization address (TSA) causes the ASP to assume a connect status (MULTICAST) in which PTDO is at high impedance but the connections from PTMS to STMS and PTDI to STDO are maintained to allow simultaneous operation of the secondary TAPs of multiple ASPs. This is useful for multicast TAP-state movement, simultaneous test operation (such as in Run-Test/Idle state), and scanning of common test data into multiple like scan chains. The TSA is valid only when received in the Pause-DR or Pause-IR TAP states.

Alternatively, primary-to-secondary connection can be selected by assertion of a low level at the bypass (BYP)\ input. This operation is asynchronous to PTCK and is independent of PTRST\ and/or power-up reset. This bypassing feature is especially useful in the board-test environment, since it allows the board-level automated test equipment (ATE) to treat the ASP as a simple transceiver. When the BYP\ input is high, the ASP is free to respond to shadow protocols. Otherwise, when BYP is low, shadow protocols are ignored.

Whether the connected status is achieved by use of shadow protocol or by use of BYP\, this status is indicated by a low level at the connect (CON)\ output. Likewise, when the secondary TAP is disconnected from the primary TAP, the CON\ output is high.

下載 觀看帶字幕的視頻 視頻

您可能感興趣的相似產品

open-in-new 比較替代產品
功能與比較器件相似
SN74AHC245-Q1 正在供貨 具有三態輸出的汽車級 2V 至 5.5V 八通道總線收發器 Larger voltage range (2V to 5.5V), lower average drive strength (9mA)

技術文檔

star =有關此產品的 TI 精選熱門文檔
未找到結果。請清除搜索并重試。
查看全部 19
類型 標題 下載最新的英語版本 日期
* 數據表 SN74LVT8996-EP 數據表 2003年 9月 3日
* VID SN74LVT8996-EP VID V6204644 2016年 6月 21日
應用手冊 慢速或浮點 CMOS 輸入的影響 (Rev. E) PDF | HTML 英語版 (Rev.E) 2025年 3月 26日
選擇指南 Logic Guide (Rev. AB) 2017年 6月 12日
應用手冊 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
選擇指南 邏輯器件指南 2014 (Rev. AA) 最新英語版本 (Rev.AC) PDF | HTML 2014年 11月 17日
選擇指南 《高級總線接口邏輯器件選擇指南》 英語版 2010年 7月 7日
用戶指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
應用手冊 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
應用手冊 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
應用手冊 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 2002年 5月 22日
應用手冊 Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002年 5月 10日
應用手冊 LVT-to-LVTH Conversion 1998年 12月 8日
應用手冊 LVT Family Characteristics (Rev. A) 1998年 3月 1日
應用手冊 Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 1997年 8月 1日
應用手冊 Input and Output Characteristics of Digital Integrated Circuits 1996年 10月 1日
應用手冊 Live Insertion 1996年 10月 1日
應用手冊 Understanding Advanced Bus-Interface Products Design Guide 1996年 5月 1日
選擇指南 Logic Guide (Rev. AC) PDF | HTML 1994年 6月 1日

設計和開發

如需其他信息或資源,請點擊以下任一標題進入詳情頁面查看(如有)。

模擬工具

PSPICE-FOR-TI — PSpice? for TI 設計和仿真工具

PSpice? for TI 可提供幫助評估模擬電路功能的設計和仿真環境。此功能齊全的設計和仿真套件使用 Cadence? 的模擬分析引擎。PSpice for TI 可免費使用,包括業內超大的模型庫之一,涵蓋我們的模擬和電源產品系列以及精選的模擬行為模型。

借助?PSpice for TI 的設計和仿真環境及其內置的模型庫,您可對復雜的混合信號設計進行仿真。創建完整的終端設備設計和原型解決方案,然后再進行布局和制造,可縮短產品上市時間并降低開發成本。?

在?PSpice for TI 設計和仿真工具中,您可以搜索 TI (...)
模擬工具

TINA-TI — 基于 SPICE 的模擬仿真程序

TINA-TI 提供了 SPICE 所有的傳統直流、瞬態和頻域分析以及更多。TINA 具有廣泛的后處理功能,允許您按照希望的方式設置結果的格式。虛擬儀器允許您選擇輸入波形、探針電路節點電壓和波形。TINA 的原理圖捕獲非常直觀 - 真正的“快速入門”。

TINA-TI 安裝需要大約 500MB。直接安裝,如果想卸載也很容易。我們相信您肯定會愛不釋手。

TINA 是德州儀器 (TI) 專有的 DesignSoft 產品。該免費版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需獲取可用 TINA-TI 模型的完整列表,請參閱:SpiceRack - 完整列表 

需要 HSpice (...)

用戶指南: PDF
英語版 (Rev.A): PDF
封裝 引腳 CAD 符號、封裝和 3D 模型
TSSOP (PW) 24 Ultra Librarian

訂購和質量

包含信息:
  • RoHS
  • REACH
  • 器件標識
  • 引腳鍍層/焊球材料
  • MSL 等級/回流焊峰值溫度
  • MTBF/時基故障估算
  • 材料成分
  • 鑒定摘要
  • 持續可靠性監測
包含信息:
  • 制造廠地點
  • 封裝廠地點

支持和培訓

視頻