產品詳情

Bits (#) 8 Data rate (max) (Mbps) 350 Topology Open drain, Push-Pull Direction control (typ) Fixed-direction Vin (min) (V) 3.15 Vin (max) (V) 3.45 Vout (min) (V) 3.15 Vout (max) (V) 3.45 Applications GTL Features Output damping resistors, Overvoltage tolerant inputs, Partial power down (Ioff) Technology family GTLP Supply current (max) (mA) 40 Rating Catalog Operating temperature range (°C) -40 to 85
Bits (#) 8 Data rate (max) (Mbps) 350 Topology Open drain, Push-Pull Direction control (typ) Fixed-direction Vin (min) (V) 3.15 Vin (max) (V) 3.45 Vout (min) (V) 3.15 Vout (max) (V) 3.45 Applications GTL Features Output damping resistors, Overvoltage tolerant inputs, Partial power down (Ioff) Technology family GTLP Supply current (max) (mA) 40 Rating Catalog Operating temperature range (°C) -40 to 85
TSSOP (DGG) 48 101.25 mm2 12.5 x 8.1
  • Member of the Texas Instruments Widebus? Family
  • TI-OPC? Circuitry Limits Ringing on Unevenly Loaded Backplanes
  • OEC? Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
  • Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
  • Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
  • AO Outputs Have Equivalent 26- Series Resistors, So No External Resistors Are Required
  • LVTTL Interfaces Are 5-V Tolerant
  • High-Drive GTLP Open-Drain Outputs (100 mA)
  • Reduced LVTTL Outputs (-12 mA/12 mA)
  • Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
  • Ioff, Power-Up 3-State, and BIAS VCC Support Live Insertion
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments.

  • Member of the Texas Instruments Widebus? Family
  • TI-OPC? Circuitry Limits Ringing on Unevenly Loaded Backplanes
  • OEC? Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
  • Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
  • Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
  • AO Outputs Have Equivalent 26- Series Resistors, So No External Resistors Are Required
  • LVTTL Interfaces Are 5-V Tolerant
  • High-Drive GTLP Open-Drain Outputs (100 mA)
  • Reduced LVTTL Outputs (-12 mA/12 mA)
  • Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
  • Ioff, Power-Up 3-State, and BIAS VCC Support Live Insertion
  • Distributed VCC and GND Pins Minimize High-Speed Switching Noise
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

OEC, TI-OPC, and Widebus are trademarks of Texas Instruments.

The SN74GTLP22033 is a high-drive, 8-bit, three-wire registered transceiver that provides inverted LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring, the same functionality as the SN74FB2033. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC™ circuitry, and TI-OPC™ circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 .

The AO outputs, which are designed to sink up to 12 mA, include equivalent 26- resistors to reduce overshoot and undershoot.

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP22033 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL (VTT = 1.2 V and VREF = 0.8 V) or GTLP (VTT = 1.5 V and VREF = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and GTLP in BTL Applications, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. VREF is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS VCC circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times.This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When VCC is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OEAB\ should be tied to VCC through a pullup resistor and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

The SN74GTLP22033 is a high-drive, 8-bit, three-wire registered transceiver that provides inverted LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring, the same functionality as the SN74FB2033. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC™ circuitry, and TI-OPC™ circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 .

The AO outputs, which are designed to sink up to 12 mA, include equivalent 26- resistors to reduce overshoot and undershoot.

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP22033 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL (VTT = 1.2 V and VREF = 0.8 V) or GTLP (VTT = 1.5 V and VREF = 1 V) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, Texas Instruments GTLP Frequently Asked Questions, literature number SCEA019, and GTLP in BTL Applications, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. VREF is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS VCC circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times.This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When VCC is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, OEAB\ should be tied to VCC through a pullup resistor and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

下載 觀看帶字幕的視頻 視頻

技術文檔

star =有關此產品的 TI 精選熱門文檔
未找到結果。請清除搜索并重試。
查看全部 20
類型 標題 下載最新的英語版本 日期
* 數據表 8-Bit LVTTL-to-GTLP Adj.-Edge-Rate Regstd.Xcvr W/ Split LVTTL Port&Feedbk Path 數據表 (Rev. C) 2001年 9月 4日
應用手冊 原理圖檢查清單 - 使用自動雙向轉換器進行設計的指南 PDF | HTML 英語版 PDF | HTML 2024年 12月 3日
應用手冊 Understanding Transient Drive Strength vs. DC Drive Strength in Level-Shifters (Rev. A) PDF | HTML 2024年 7月 3日
應用手冊 了解 CMOS 輸出緩沖器中的瞬態驅動強度與直流驅動強度 PDF | HTML 最新英語版本 (Rev.A) PDF | HTML 2024年 5月 15日
選擇指南 Voltage Translation Buying Guide (Rev. A) 2021年 4月 15日
選擇指南 Logic Guide (Rev. AB) 2017年 6月 12日
應用手冊 Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 2015年 12月 2日
選擇指南 邏輯器件指南 2014 (Rev. AA) 最新英語版本 (Rev.AC) PDF | HTML 2014年 11月 17日
選擇指南 《高級總線接口邏輯器件選擇指南》 英語版 2010年 7月 7日
用戶指南 LOGIC Pocket Data Book (Rev. B) 2007年 1月 16日
應用手冊 Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 2004年 7月 8日
應用手冊 TI IBIS File Creation, Validation, and Distribution Processes 2002年 8月 29日
應用手冊 Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 2002年 5月 10日
應用手冊 Logic in Live-Insertion Applications With a Focus on GTLP 2002年 1月 14日
用戶指南 GTLP/GTL Logic High-Performance Backplane Drivers Data Book (Rev. A) 2001年 9月 15日
應用手冊 Achieving Maximum Speed on Parallel Buses With Gunning Transceiver Logic (GTLP) 2001年 4月 5日
應用簡報 Texas Instruments GTLP Frequently Asked Questions 2001年 1月 1日
應用手冊 Fast GTLP Backplanes With the GTLPH1655 (Rev. A) 2000年 9月 19日
更多文獻資料 High Level Brochure of Gunning Transceiver Logic Plus 2000年 1月 14日
選擇指南 Logic Guide (Rev. AC) PDF | HTML 1994年 6月 1日

設計和開發

如需其他信息或資源,請點擊以下任一標題進入詳情頁面查看(如有)。

封裝 引腳 CAD 符號、封裝和 3D 模型
TSSOP (DGG) 48 Ultra Librarian

訂購和質量

包含信息:
  • RoHS
  • REACH
  • 器件標識
  • 引腳鍍層/焊球材料
  • MSL 等級/回流焊峰值溫度
  • MTBF/時基故障估算
  • 材料成分
  • 鑒定摘要
  • 持續可靠性監測
包含信息:
  • 制造廠地點
  • 封裝廠地點

支持和培訓

視頻