SN65HVD233-EP

正在供貨

3.3V CAN 收發器(增強型產品)

產品詳情

Protocols CAN Number of channels 1 Supply voltage (V) 3 to 3.6 Bus fault voltage (V) -36 to 36 Signaling rate (max) (Mbps) 1 Rating HiRel Enhanced Product
Protocols CAN Number of channels 1 Supply voltage (V) 3 to 3.6 Bus fault voltage (V) -36 to 36 Signaling rate (max) (Mbps) 1 Rating HiRel Enhanced Product
SOIC (D) 8 29.4 mm2 4.9 x 6
  • Bus-Pin Fault Protection Exceeds ±36 V
  • Bus-Pin ESD Protection Exceeds 16-kV HBM
  • Compatible With ISO 11898
  • Signaling Rates(1) up to 1 Mbps
  • Extended –7-V to 12-V Common-Mode Range
  • High-Input Impedance Allows for 120 Nodes
  • LVTTL I/Os Are 5-V Tolerant
  • Adjustable Driver Transition Times for Improved Signal Quality
  • Unpowered Node Does Not Disturb the Bus
  • Low-Current Standby Mode . . . 200-μA Typical
  • Thermal Shutdown Protection
  • Power-Up/Down Glitch-Free Bus Inputs and Outputs
    • High Input Impedance With Low VCC
    • Monolithic Output During Power Cycling
  • Loopback for Diagnostic Functions Available
  • DeviceNet Vendor ID #806(1)
  • SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
    • Controlled Baseline
    • One Assembly/Test Site
    • One Fabrication Site
    • Available in Military (–55°C/125°C) Temperature Range(1)
    • Extended Product Life Cycle
    • Extended Product-Change Notification
    • Product Traceability
  • APPLICATIONS
    • CAN Data Bus
    • Industrial Automation
      • DeviceNet Data Buses
      • Smart Distributed Systems (SDS?)
    • SAE J1939 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface
    • ISO 11783 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).
(1) Additional temperature ranges available - contact factory
DeviceNet is a trademark of Open DeviceNet Vendor Association.

  • Bus-Pin Fault Protection Exceeds ±36 V
  • Bus-Pin ESD Protection Exceeds 16-kV HBM
  • Compatible With ISO 11898
  • Signaling Rates(1) up to 1 Mbps
  • Extended –7-V to 12-V Common-Mode Range
  • High-Input Impedance Allows for 120 Nodes
  • LVTTL I/Os Are 5-V Tolerant
  • Adjustable Driver Transition Times for Improved Signal Quality
  • Unpowered Node Does Not Disturb the Bus
  • Low-Current Standby Mode . . . 200-μA Typical
  • Thermal Shutdown Protection
  • Power-Up/Down Glitch-Free Bus Inputs and Outputs
    • High Input Impedance With Low VCC
    • Monolithic Output During Power Cycling
  • Loopback for Diagnostic Functions Available
  • DeviceNet Vendor ID #806(1)
  • SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
    • Controlled Baseline
    • One Assembly/Test Site
    • One Fabrication Site
    • Available in Military (–55°C/125°C) Temperature Range(1)
    • Extended Product Life Cycle
    • Extended Product-Change Notification
    • Product Traceability
  • APPLICATIONS
    • CAN Data Bus
    • Industrial Automation
      • DeviceNet Data Buses
      • Smart Distributed Systems (SDS?)
    • SAE J1939 Standard Data Bus Interface
    • NMEA 2000 Standard Data Bus Interface
    • ISO 11783 Standard Data Bus Interface

(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).
(1) Additional temperature ranges available - contact factory
DeviceNet is a trademark of Open DeviceNet Vendor Association.

The SN65HVD233 is used in applications employing the controller area network (CAN) serial communication physical layer in accordance with the ISO 11898 standard. As a CAN transceiver, it provides transmit and receive capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps.

Designed for operation in especially harsh environments, the device features cross-wire, overvoltage and loss of ground protection to ±36 V, with overtemperature protection and common-mode transient protection of ±100 V. This device operates over a –7-V to 12-V common-mode range with a maximum of 60 nodes on a bus.

If the common-mode range is restricted to the ISO-11898 Standard range of –2 V to 7 V, up to 120 nodes may be connected on a bus. This transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.

The RS (pin 8) of the SN65HVD233 provides for three modes of operation: high-speed, slope control, or low-power standby mode. The high-speed mode of operation is selected by connecting RS directly to ground, allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at RS, since the slope is proportional to the pin's output current. Slope control is implemented with a resistor value of 10 k to achieve a slew rate of 15 V/µs and a value of 100 k to achieve 2.0 V/µs slew rate. For more information about slope control, refer to the application information section.

The SN65HVD233 enters a low-current standby mode during which the driver is switched off and the receiver remains active if a high logic level is applied to RS. The local protocol controller reverses this low-current standby mode when it needs to transmit to the bus.

A logic high on the loopback LBK (pin 5) of the SN65HVD233 places the bus output and bus input in a high-impedance state. The remaining circuit remains active and available for driver to receiver loopback, self-diagnostic node functions without disturbing the bus.

The SN65HVD233 is used in applications employing the controller area network (CAN) serial communication physical layer in accordance with the ISO 11898 standard. As a CAN transceiver, it provides transmit and receive capability between the differential CAN bus and a CAN controller, with signaling rates up to 1 Mbps.

Designed for operation in especially harsh environments, the device features cross-wire, overvoltage and loss of ground protection to ±36 V, with overtemperature protection and common-mode transient protection of ±100 V. This device operates over a –7-V to 12-V common-mode range with a maximum of 60 nodes on a bus.

If the common-mode range is restricted to the ISO-11898 Standard range of –2 V to 7 V, up to 120 nodes may be connected on a bus. This transceiver interfaces the single-ended CAN controller with the differential CAN bus found in industrial, building automation, and automotive applications.

The RS (pin 8) of the SN65HVD233 provides for three modes of operation: high-speed, slope control, or low-power standby mode. The high-speed mode of operation is selected by connecting RS directly to ground, allowing the driver output transistors to switch on and off as fast as possible with no limitation on the rise and fall slope. The rise and fall slope can be adjusted by connecting a resistor to ground at RS, since the slope is proportional to the pin's output current. Slope control is implemented with a resistor value of 10 k to achieve a slew rate of 15 V/µs and a value of 100 k to achieve 2.0 V/µs slew rate. For more information about slope control, refer to the application information section.

The SN65HVD233 enters a low-current standby mode during which the driver is switched off and the receiver remains active if a high logic level is applied to RS. The local protocol controller reverses this low-current standby mode when it needs to transmit to the bus.

A logic high on the loopback LBK (pin 5) of the SN65HVD233 places the bus output and bus input in a high-impedance state. The remaining circuit remains active and available for driver to receiver loopback, self-diagnostic node functions without disturbing the bus.

下載 觀看帶字幕的視頻 視頻

技術文檔

star =有關此產品的 TI 精選熱門文檔
未找到結果。請清除搜索并重試。
查看全部 3
類型 標題 下載最新的英語版本 日期
* 數據表 3.3-V CAN Tranceiver 數據表 2008年 8月 20日
* VID SN65HVD233-EP VID V6209611 2016年 6月 21日
* 輻射與可靠性報告 SN65HVD233MDRE Reliability Reports 2011年 11月 30日

設計和開發

如需其他信息或資源,請點擊以下任一標題進入詳情頁面查看(如有)。

模擬工具

PSPICE-FOR-TI — PSpice? for TI 設計和仿真工具

PSpice? for TI 可提供幫助評估模擬電路功能的設計和仿真環境。此功能齊全的設計和仿真套件使用 Cadence? 的模擬分析引擎。PSpice for TI 可免費使用,包括業內超大的模型庫之一,涵蓋我們的模擬和電源產品系列以及精選的模擬行為模型。

借助?PSpice for TI 的設計和仿真環境及其內置的模型庫,您可對復雜的混合信號設計進行仿真。創建完整的終端設備設計和原型解決方案,然后再進行布局和制造,可縮短產品上市時間并降低開發成本。?

在?PSpice for TI 設計和仿真工具中,您可以搜索 TI (...)
模擬工具

TINA-TI — 基于 SPICE 的模擬仿真程序

TINA-TI 提供了 SPICE 所有的傳統直流、瞬態和頻域分析以及更多。TINA 具有廣泛的后處理功能,允許您按照希望的方式設置結果的格式。虛擬儀器允許您選擇輸入波形、探針電路節點電壓和波形。TINA 的原理圖捕獲非常直觀 - 真正的“快速入門”。

TINA-TI 安裝需要大約 500MB。直接安裝,如果想卸載也很容易。我們相信您肯定會愛不釋手。

TINA 是德州儀器 (TI) 專有的 DesignSoft 產品。該免費版本具有完整的功能,但不支持完整版 TINA 所提供的某些其他功能。

如需獲取可用 TINA-TI 模型的完整列表,請參閱:SpiceRack - 完整列表 

需要 HSpice (...)

用戶指南: PDF
英語版 (Rev.A): PDF
封裝 引腳 CAD 符號、封裝和 3D 模型
SOIC (D) 8 Ultra Librarian

訂購和質量

包含信息:
  • RoHS
  • REACH
  • 器件標識
  • 引腳鍍層/焊球材料
  • MSL 等級/回流焊峰值溫度
  • MTBF/時基故障估算
  • 材料成分
  • 鑒定摘要
  • 持續可靠性監測
包含信息:
  • 制造廠地點
  • 封裝廠地點

推薦產品可能包含與 TI 此產品相關的參數、評估模塊或參考設計。

支持和培訓

視頻