SGLS155B February 2003 – November 2016 TPS768-Q1
PRODUCTION DATA.
| MIN | MAX | UNIT | |
|---|---|---|---|
| Input voltage, VI (2) | –0.3 | 13.5 | V |
| Voltage at EN | –0.3 | VI + 0.3 | V |
| Maximum PG voltage | 16.5 | V | |
| Peak output current | Internally limited | ||
| Output voltage, VO (OUT, FB) | 7 | V | |
| Operating junction temperature, TJ | –40 | 150 | °C |
| Storage temperature, Tstg | –65 | 150 | °C |
| VALUE | UNIT | ||||
|---|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per AEC Q100-002(1) | ±2000 | V | |
| Charged-device model (CDM), per AEC Q100-011 | All pins | ±500 | |||
| Corner pins (1, 4, 5, and 8) | ±750 | ||||
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| VI | Input voltage(1) | 2.7 | 10 | V |
| VO | Voltage at OUT | 1.2 | 5.5 | V |
| IO | Output current(2) | 0 | 1 | A |
| TA | Operating ambient temperature(2) | –40 | 125 | °C |
| THERMAL METRIC(1) | TPS768xx-Q1 | UNIT | |
|---|---|---|---|
| PWP (HTSSOP) | |||
| 20 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 39.5 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 25.8 | °C/W |
| RθJB | Junction-to-board thermal resistance | 22.1 | °C/W |
| ψJT | Junction-to-top characterization parameter | 0.8 | °C/W |
| ψJB | Junction-to-board characterization parameter | 21.9 | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 1.7 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
|---|---|---|---|---|---|---|---|---|
| Output voltage (10-μA to 1-A load)(1) |
TPS76801-Q1 | 5.5 V ≥ VO ≥ 1.5 V | TJ = 25°C | VO | V | |||
| TJ = –40°C to 125°C | 0.98 × VO | 1.02 × VO | ||||||
| TPS76818-Q1 | 2.8 V < VIN < 10 V | TJ = 25°C | 1.8 | |||||
| TJ = –40°C to 125°C | 1.764 | 1.836 | ||||||
| TPS76825-Q1 | 3.5 V < VIN < 10 V | TJ = 25°C | 2.5 | |||||
| TJ = –40°C to 125°C | 2.45 | 2.55 | ||||||
| TPS76833-Q1 | 4.3 V < VIN < 10 V | TJ = 25°C | 3.3 | |||||
| TJ = –40°C to 125°C | 3.234 | 3.366 | ||||||
| TPS76850-Q1 | 6 V < VIN < 10 V | TJ = 25°C | 5 | |||||
| TJ = –40°C to 125°C | 4.9 | 5.1 | ||||||
| Quiescent current (GND current), EN = 0 V(1) | TJ = 25°C 10 μA < IO < 1 A, TJ = 25°C | 85 | μA | |||||
| TJ = –40°C to 125°C IO = 1 A, TJ = –40°C to 125°C | 125 | |||||||
| Output voltage line regulation (ΔVO / VO) (1) (2) | TJ = 25°C VO + 1 V < VI ≤ 10 V, TJ = 25°C | 0.01 | %/V | |||||
| Load regulation | 3 | mV | ||||||
| Output noise voltage | TPS76818-Q1 | TJ = 25°C BW = 200 Hz to 100 kHz, CO = 10 μF, IC = 1 A, TJ = 25°C | 55 | μVrms | ||||
| Output current limit | VO = 0 V | 1.7 | 2 | A | ||||
| Thermal shutdown junction temperature | 150 | °C | ||||||
| Standby current | EN = VI, 2.7 V < VI < 10 V |
TJ = 25°C | 1 | μA | ||||
| TJ = –40°C to 125°C | 10 | |||||||
| FB input current | TPS76801-Q1 | VFB = 1.5 V | 2 | nA | ||||
| High-level enable input voltage | 1.7 | V | ||||||
| Low-level enable input voltage | 0.9 | V | ||||||
| Power-supply ripple rejection (1) | TJ = 25°C f = 1 kHz, CO = 10 μF, TJ = 25°C | 60 | dB | |||||
| PG | Minimum input voltage for valid PG | IO(PG) = 300 μA | 1.1 | V | ||||
| Trip threshold voltage | VO decreasing | 92 | 98 | %VO | ||||
| Hysteresis voltage | Measured at VO | 0.5 | %VO | |||||
| Output low voltage | VI = 2.7 V, IO(PG) = 1 mA | 0.15 | 0.4 | V | ||||
| Leakage current | V(PG) = 5 V | 1 | μA | |||||
| EN input current | EN = 0 V | –1 | 0 | 1 | μA | |||
| EN = VI | –1 | 1 | ||||||
| Dropout voltage (3) | TPS76833-Q1 | IO = 1 A | TJ = 25°C | 350 | mV | |||
| TJ = –40°C to 125°C | 575 | |||||||
| TPS76850-Q1 | TJ = 25°C | 230 | ||||||
| TJ = –40°C to 125°C | 380 | |||||||
Figure 1. TPS76833-Q1 Output Voltage vs Output Current
Figure 3. TPS76833-Q1 Output Voltage vs Ambient Temperature
Figure 5. TPS76833-Q1 Ground Current vs Ambient Temperature
Figure 7. TPS76833-Q1 Output Spectral Noise Density vs Frequency
Figure 9. TPS76833-Q1 Output Impedance vs Frequency
Figure 11. TPS76833-Q1 Line Transient Response
Figure 13. TPS76833-Q1 Output Voltage vs Time (at Start-Up)
Figure 15. Typical Region of Stability Equivalent Series Resistance Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally, and PWB trace resistance to C vs Output Current
Figure 17. Typical Region of Stability Equivalent Series Resistance(1) vs Output Current
Figure 2. TPS76825-Q1 Output Voltage vs Output Current
Figure 4. TPS76825-Q1 Output Voltage vs Ambient Temperature
Figure 6. TPS76833-Q1 Power-Supply Ripple Rejection vs Frequency
Figure 8. Input Voltage (Min.) vs Output Voltage
Figure 10. TPS76833-Q1 Dropout Voltage vs Ambient Temperature
Figure 12. TPS76833-Q1 Load Transient Response
Figure 14. TPS76801-Q1 Dropout Voltage vs Input Voltage
Figure 16. Typical Region of Stability Equivalent Series Resistance(1) vs Output Current
Figure 18. Typical Region of Stability Equivalent Series Resistance(1) vs Output Current