SLVS844A September 2008 – June 2015 TPS65055
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| Input voltage range on all pins except A/PGND, EN_LDO1 pins with respect to AGND | –0.3 | 7 | V | |
| Input voltage range on EN_LDO1 pins with respect to AGND | –0.3 | VCC+0.5 | V | |
| Output voltage range on LDO1, LDO2, LDO3, LDO4 pins with respect to AGND | –0.3 | 4 | V | |
| Current at VINDCDC1/2, L1, PGND1, L2, PGND2 | 1800 | mA | ||
| Current at all other pins | 1000 | mA | ||
| Continuous total power dissipation | See Dissipation Ratings | |||
| TA | Operating free-air temperature | –40 | 85 | °C |
| TJ | Maximum junction temperature | 125 | °C | |
| Lead temperature 1,6 mm (1/16-inch) from case for 10 seconds | 260 | °C | ||
| Tst | Storage temperature | –65 | 150 | °C |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| Charged device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| VINDCDC1/2 | Input voltage range for step-down converters | 2.5 | 4 | 6 | V |
| VDCDC1 | Output voltage range for VDCDC1 step-down converter | 0.6 | VINDCDC1 | V | |
| VDCDC2 | Output voltage range for VDCDC2 step-down converter | 0.6 | VINDCDC2 | V | |
| VINLDO1, VINLDO2, VINLDO3/4 | Input voltage range for LDOs | 1.5 | 6.5 | V | |
| VLDO1-3 | Output voltage range for LDO1 and LDO3 | 0.8 | 2.8 | V | |
| VLDO2-4 | Output voltage range for LDO2 and LDO4 | 1 | 3 | V | |
| IOUTDCDC1 | Output current at L1 | 600 | mA | ||
| L1 | Inductor at L1(1) | 1.5 | 2.2 | μH | |
| CINDCDC1/2 | Input capacitor at VINDCDC1/2(1) | 22 | μF | ||
| COUTDCDC1 | Output capacitor at VDCDC1(1) | 10 | 22 | μF | |
| IOUTDCDC2 | Output current at L2 | 600 | mA | ||
| L2 | Inductor at L2(1) | 1.5 | 2.2 | μH | |
| COUTDCDC2 | Output capacitor at VDCDC2(1) | 10 | 22 | μF | |
| CVCC | Input capacitor at VCC (1) | 1 | μF | ||
| Cin1-2 | Input capacitor at VINLDO1/2(1) | 2.2 | μF | ||
| Cin3-4 | Input capacitor at VINLDO3/4(1) | 2.2 | μF | ||
| COUT1-2 | Output capacitor at VLDO1-4(1) | 2.2 | μF | ||
| ILDO1,2 | Output current at VLDO1,2 | 400 | mA | ||
| ILDO3,4 | Output current at VLDO3,4 | 200 | mA | ||
| TA | Operating ambient temperature | –40 | 85 | °C | |
| TJ | Operating junction temperature | –40 | 125 | °C | |
| RCC | Resistor from battery voltage to Vcc used for filtering(2) | 1 | 10 | Ω | |
| THERMAL METRIC(1) | TPS65055 | UNIT | |
|---|---|---|---|
| RSM [VQFN] | |||
| 32 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 37.2 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 30.1 | °C/W |
| RθJB | Junction-to-board thermal resistance | 7.8 | °C/W |
| ψJT | Junction-to-top characterization parameter | 0.4 | °C/W |
| ψJB | Junction-to-board characterization parameter | 7.6 | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 2.4 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |||
|---|---|---|---|---|---|---|---|---|
| SUPPLY CURRENT | ||||||||
| Vcc | Input voltage range | 2.5 | 6 | V | ||||
| IQ | Operating quiescent current Total current into VCC, VINDCDC1/2, VINLDO1, VINLDO2, VINLDO3/4 |
One converter, IOUT = 0 mA. PFM mode enabled; device not switching, EN_DCDC1 = VIN or EN_DCDC2 = VIN; EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND |
30 | 40 | μA | |||
| Two converters, IOUT = 0 mA, PFM mode device not switching, EN_DCDC1 = VIN and EN_DCDC2 = VIN; EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND |
40 | 55 | μA | |||||
| One converter, IOUT = 0 mA, PFM mode enabled; device not switching, EN_DCDC1 = VIN or EN_DCDC2 = VIN; EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = VIN |
190 | 260 | μA | |||||
| IQ | Operating quiescent current into VCC | One converter, IOUT = 0 mA, Switching with no load, PWM operation EN_DCDC1 = VIN or EN_DCDC2 = VIN; EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND |
0.85 | mA | ||||
| Two converters, IOUT = 0 mA, Switching with no load, PWM operation EN_DCDC1 = VIN AND EN_DCDC2 = VIN; EN_LDO1 = EN_LDO2 = EN_LDO3/4 = GND |
1.25 | mA | ||||||
| I(SD) | Shutdown current | EN_DCDC1 = EN_DCDC2 = GND EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = GND |
18 | 22 | μA | |||
| V(UVLO) | Undervoltage lockout threshold for DCDC converters and LDOs | Voltage at VCC | 1.8 | 2 | V | |||
| EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4 | ||||||||
| VIH | High-level input voltage, SDAT, SCLK, EN_DCDC1, EN_DCDC2, DEFDCDC2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4 |
1.2 | VCC | V | ||||
| VIL | Low-level input voltage SDAT, SCLK, EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4, DEFDCDC2 |
0 | 0.4 | V | ||||
| IIN | Input bias current SDAT, SCLK, EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4 |
0.01 | 1 | μA | ||||
| VIH | DEFLDO1, DEFLDO2 | VCC = 2.5 V | 1.0 | V | ||||
| VIL | DEFLDO1, DEFLDO2 | VCC = 6.5 V | 0.38 | V | ||||
| RPD | Pulldown resistor at DEFLDO1, DEFLDO2 for LOW signal | Pulled to GND | 1 | kΩ | ||||
| RPU | Pullup resistor at DEFLDO1, DEFLDO2 for HIGH signal | Pulled to VCC | 1 | kΩ | ||||
| RGNDopen | Resistance at DEFLDO1, DEFLDO2 to GND to detect open state | 10 | MΩ | |||||
| RVCCopen | Resistance at DEFLDO1, DEFLDO2 to Vcc to detect open state | 20 | MΩ | |||||
| POWER SWITCH | ||||||||
| rDS(on) | P-channel MOSFET on resistance | DCDC1, DCDC2 | VINDCDC1/2 = 3.6 V | 280 | 630 | mΩ | ||
| VINDCDC1/2 = 2.5 V | 400 | |||||||
| ILD_PMOS | P-channel leakage current | VDS = 6 V | 1 | μA | ||||
| rDS(on) | N-channel MOSFET on resistance | DCDC1, DCDC2 | VINDCDC1/2 = 3.6 V | 220 | 450 | mΩ | ||
| VINDCDC1/2 = 2.5 V | 320 | |||||||
| ILK_NMOS | N-channel leakage current | VDS = 6 V | 7 | 10 | μA | |||
| I(LIMF) | Forward current limit PMOS (high-side) and NMOS (low side) | DCDC1 | 2.5 V ≤ VIN ≤ 6 V | 0.85 | 1.0 | 1.15 | A | |
| DCDC2 | 0.85 | 1.0 | 1.15 | |||||
| TSD | Thermal shutdown | Increasing junction temperature | 150 | °C | ||||
| Thermal shutdown hysteresis | Decreasing junction temperature | 20 | °C | |||||
| OSCILLATOR | ||||||||
| fSW | Oscillator frequency | 2.025 | 2.25 | 2.475 | MHz | |||
| OUTPUT | ||||||||
| VOUT | Output voltage range | 0.8 | VIN | V | ||||
| VOUT | DC output voltage accuracy | DCDC1, DCDC2(1) | VIN = 2.5 V to 6 V, Mode = GND, PFM operation, 0 mA < IOUT < IOUTMAX |
–1.5% | 0% | 3.5% | ||
| VIN = 2.5 V to 6 V, Mode = VIN, PWM operation, 0 mA < IOUT < IOUTMAX |
–1.5% | 0% | 1.5% | |||||
| ΔVOUT | Power save mode ripple voltage(2) | IOUT = 1 mA, PFM = GND, Bandwidth = 20 MHz | 25 | mVPP | ||||
| tStart | Start-up time | Time from active EN to start switching | 170 | μs | ||||
| tRamp | VOUT Ramp up time | Time to ramp from 5% to 95% of VOUT | 750 | μs | ||||
| RDIS | Internal discharge resistor at L1, L2 | 350 | Ω | |||||
| VOL | RST, DPD, discharge output low voltage | IOL = 1 mA, Vthreshold < 0.8 V | 0.3 | V | ||||
| IOL | RST, DPD sink current | 1 | mA | |||||
| discharge sink current | 10 | mA | ||||||
| RST, DPD, discharge output leakage current | Vthreshold > 0.8 V, RST and DPD outputs turned off (internal NMOS in high impedance state) | 0.01 | 1 | μA | ||||
| Vth | Vthreshold voltage | Voltage rising | 0.78 | 0.8 | 0.82 | V | ||
| Hysteresis on threshold | Voltage decreasing | 80 | mV | |||||
| VLDO1, VLDO2, VLDO3 and VLDO4 LOW DROPOUT REGULATORS | ||||||||
| VINLDO | Input voltage range for LDO1, LDO2, LDO3, LDO4 | 1.5 | 6.5 | V | ||||
| VLDO1 | LDO1 output voltage range | 0.8 | 2.8 | V | ||||
| VLDO2 | LDO2 output voltage range | 1.2 | 3 | V | ||||
| VLDO3 | LDO3 output voltage | 0.8 | 2.8 | V | ||||
| VLDO4 | LDO4 output voltage range | 1.2 | 3 | V | ||||
| IO | Maximum output current for LDO1,LDO2 | 400 | mA | |||||
| Maximum output current for LDO3, LDO4 | 200 | |||||||
| I(SC) | LDO1 and LDO2 short-circuit current limit | VLDO1 = GND, VLDO2 = GND | 800 | mA | ||||
| LDO3 and LDO4 short-circuit current limit | VLDO3 = GND, VLDO4 = GND | 400 | mA | |||||
| Dropout voltage at LDO1 | IO = 250 mA, VINLDO = 1.8 V | 600 | mV | |||||
| Dropout voltage at LDO2 | IO = 400 mA, VINLDO = 3.3 V | 450 | mV | |||||
| Dropout voltage at LDO3, LDO4 | IO = 200 mA, VINLDO = 1.8 V | 280 | mV | |||||
| Output voltage accuracy for LDO1, LDO2, LDO3 | IO = 10 mA | –2% | 1% | |||||
| Leakage current from VINLDOx to VLDOx | LDO enabled, VINLDOx = 6.5 V; VO = 1.0 V, T = 140°C | 3 | μA | |||||
| Output voltage accuracy for LDO1, LDO2, LDO3, LDO4 | IO = 10 mA | –2% | 1% | |||||
| Line regulation for LDO1, LDO2, LDO3, LDO4 | VINLDO1,2 = VLDO1,2 + 0.5 V (minimum 2.5 V) to 6.5 V, VINLDO3,4 = VLDO3,4 + 0.5 V (minimum 2.5 V) to 6.5 V, IO = 10 mA |
–1% | 1% | |||||
| Load regulation for LDO1, LDO2, LDO3, LDO4 | IO = 0mA to 400 mA for LDO1, LDO2 IO = 0mA to 200 mA for LDO3, LDO4 |
–1% | 1% | |||||
| Regulation time for LDO1, LDO2, LDO3, LDO4 | Load change from 10% to 90% | 10 | μs | |||||
| PSRR | Power supply rejection ratio | f = 10 kHz; IO = 50 mA; VI = VO + 1 V | 70 | dB | ||||
| RDIS | Internal discharge resistor at VLDO1, VLDO2, VLDO3, VLDO4 | 350 | Ω | |||||
| TSD | Thermal shutdown | Increasing junction temperature | 140 | °C | ||||
| Thermal shutdown hysteresis | Decreasing junction temperature | 20 | °C | |||||
| PACKAGE | RθJA | TA ≤ 25°C POWER RATING |
DERATING FACTOR ABOVE TA = 25°C |
TA = 70°C POWER RATING |
TA = 85°C POWER RATING |
|---|---|---|---|---|---|
| RSM(1) | 58 K/W | 1.7 W | 17 mW/K | 0.95 W | 0.68 W |
| FIGURE | |||
|---|---|---|---|
| η | Efficiency DCDC1 (VO = 2.1 V) | vs Load current / PWM mode | Figure 1 |
| η | Efficiency DCDC1 (VO = 2.1 V) | vs Load current / PFM mode | Figure 2 |
| η | Efficiency DCDC2 (VO = 1.575 V) | vs Load current / PWM mode | Figure 3 |
| η | Efficiency DCDC2 (VO = 1.575 V) | vs Load current / PFM mode | Figure 4 |
| η | Efficiency DCDC2 (VO = 1.2 V) | vs Load current / PWM mode | Figure 5 |
| η | Efficiency DCDC2 (VO = 1.2 V) | vs Load current / PFM mode | Figure 6 |
| Output voltage ripple in PFM mode | Scope plot | Figure 7 | |
| Output voltage ripple in PWM mode | Scope plot | Figure 8 | |
| Startup timing DCDC1, DCDC2, LDO1 | Scope plot | Figure 9 | |
| Startup timing LDO1, LDO2, LDO3, LDO4 | Scope plot | Figure 10 | |
| Load transient response DCDC1; PWM | Scope plot | Figure 11 | |
| Load transient response DCDC1; PFM | Scope plot | Figure 12 | |
| Load transient response DCDC2; PWM | Scope plot | Figure 13 | |
| Load transient response DCDC2;PFM | Scope plot | Figure 14 | |
| Line transient response DCDC1 (VO = 2.1 V) | Scope plot | Figure 15 | |
| Line transient response DCDC2 (VO = 1.2 V) | Scope plot | Figure 16 | |
| Load transient response LDO1 | Scope plot | Figure 17 | |
| Load transient response LDO4 | Scope plot | Figure 18 | |
| Line transient response LDO1 | Scope plot | Figure 19 |
Figure 1. Efficiency DCDC1 (VO = 2.1 V) vs Load Current / PWM Mode
Figure 3. Efficiency DCDC2 (VO = 1.575 V) vs Load Current / PWM Mode
Figure 5. Efficiency DCDC2 (VO = 1.2 V) vs Load Current / PWM Mode







Figure 2. Efficiency DCDC1 (VO = 2.1 V) vs Load Current / PFM Mode
Figure 4. Efficiency DCDC2 (VO = 1.575 V) vs Load Current / PFM Mode
Figure 6. Efficiency DCDC2 (VO = 1.2 V) vs Load Current / PFM Mode





