SLVS607D September 2005 – January 2016 TPS65020
PRODUCTION DATA.
| MIN | MAX | UNIT | ||
|---|---|---|---|---|
| VI | Input voltage on all pins except AGND and PGND pins with respect to AGND | –0.3 | 7 | V |
| Current at VINDCDC1, L1, PGND1, VINDCDC2, L2, PGND2, VINDCDC3, L3, PGND3 | 2000 | mA | ||
| Peak current at all other pins | 1000 | mA | ||
| TA | Operating free-air temperature | –40 | 85 | °C |
| TJ | Maximum junction temperature | 125 | °C | |
| Tstg | Storage temperature | –65 | 150 | °C |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| VCC | Input voltage step-down convertors and VCC pin (VINDCDC1, VINDCDC2, VINDCDC3, VCC); pins must be tied to the same voltage rail |
2.5 | 6 | V | |
| VO | Output voltage for VDCDC1 step-down convertor(1) | 0.6 | VINDCDC1 | V | |
| Output voltage for VDCDC2 step-down convertor(1) | 0.6 | VINDCDC2 | |||
| Output voltage for VDCDC3 (core) step-down convertor(1) | 0.6 | VINDCDC3 | |||
| VI | Input voltage for LDOs (VINLDO1, VINLDO2) | 1.5 | 6.5 | V | |
| VO | Output voltage for LDOs (VLDO1, VLDO2) | 1 | VINLDO1-2 | V | |
| IO(DCDC1) | Output current at L1 | 1200 | mA | ||
| Inductor at L1(2) | 2.2 | 3.3 | μH | ||
| CI(DCDC1) | Input capacitor at VI(DCDC1) (2) | 10 | μF | ||
| CO(DCDC1) | Output capacitor at VDCDC1 (2) | 10 | 22 | μF | |
| IO(DCDC2) | Output current at L2 | 1000 | mA | ||
| Inductor at L2 (2) | 2.2 | 3.3 | μH | ||
| CI(DCDC2) | Input capacitor at VDCDC2 (2) | 10 | μF | ||
| CO(DCDC2) | Output capacitor at VDCDC2 (2) | 10 | 22 | μF | |
| IO(DCDC3) | Output current at L3 | 800 | mA | ||
| Inductor at L3 (2) | 2.2 | 3.3 | μH | ||
| CI(DCDC3) | Input capacitor at VDCDC3 (2) | 10 | μF | ||
| CO(DCDC3) | Output capacitor at VDCDC3 (2) | 10 | 22 | μF | |
| CI(VCC) | Input capacitor at VCC (2) | 1 | μF | ||
| Ci(VINLDO) | Input capacitor at VINLDO (2) | 1 | μF | ||
| CO(VLDO1-2) | Output capacitor at VLDO1, VLDO2 (2) | 2.2 | μF | ||
| IO(VLDO1-2) | Output current at VLDO1, VLDO2 | 200 | mA | ||
| CO(VRTC) | Output capacitor at VRTC (2) | 4.7 | μF | ||
| TA | Operating ambient temperature | –40 | 85 | °C | |
| TJ | Operating junction temperature | –40 | 125 | °C | |
| Resistor from VINDCDC3, VINDCDC2, VINDCDC1 to VCC used for filtering(3) | 1 | 10 | Ω | ||
| THERMAL METRIC(1) | TPS65020 | UNIT | |
|---|---|---|---|
| RHA (VQFN) | |||
| 40 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 31.6 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 18.2 | °C/W |
| RθJB | Junction-to-board thermal resistance | 6.6 | °C/W |
| ψJT | Junction-to-top characterization parameter | 0.2 | °C/W |
| ψJB | Junction-to-board characterization parameter | 6.5 | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 1.7 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP(2) | MAX | UNIT | |
|---|---|---|---|---|---|---|
| CONTROL SIGNALS: SCLK, SDAT (INPUT), DCDC1_EN, DCDC2_EN, DCDC3_EN, LDO_EN | ||||||
| VIH | High level input voltage | Rpullup = 4.7 kΩ, pulled to VRTC | 1.3 | VCC | V | |
| VIL | Low level input voltage | Rpullup = 4.7 kΩ, pulled to VRTC | 0 | 0.4 | V | |
| IH | Input bias current | 0.01 | 0.1 | μA | ||
| CONTROL SIGNALS: HOT_RESET | ||||||
| VIH | High level input voltage | 1.3 | VCC | V | ||
| VIL | Low level input voltage | 0 | 0.4 | V | ||
| Pullup resistor at HOT_RESET, connected to VCC | 1000 | kΩ | ||||
| tdeglitch | Deglitch time at HOT_RESET | 25 | 30 | 35 | ms | |
| CONTROL SIGNALS: LOWBAT, PWRFAIL, RESPWRON, INT, SDAT (OUTPUT) | ||||||
| VOH | High level output voltage | 6 | V | |||
| VOL | Low level output voltage | IIL = 5 mA | 0 | 0.3 | V | |
| Duration of low pulse at RESPWRON | External capacitor 1 nF | 100 | ms | |||
| ICONST | Internal charge / discharge current on pin TRESPWRON | Used for generating RESPWRON delay | 1.7 | 2 | 2.3 | μA |
| TRESPWRON_LOWTH | Internal lower comparator threshold on pin TRESPWRON | Used for generating RESPWRON delay | 0.225 | 0.25 | 0.275 | V |
| TRESPWRON_UPTH | Internal upper comparator threshold on pin TRESPWRON | Used for generating RESPWRON delay | 0.97 | 1 | 1.103 | V |
| Resetpwron threshold VRTC falling | –3% | 2.4 | 3% | V | ||
| Resetpwron threshold VRTC rising | –3% | 2.52 | 3% | V | ||
| ILK | Leakage current | Output inactive high | 0.1 | μA | ||
| VLDO1 AND VLDO2 LOW-DROPOUT REGULATORS | ||||||
| VI | Input voltage range for LDO1, 2 | 1.5 | 6.5 | V | ||
| VO | LDO1 output voltage range | 1 | 3.3 | V | ||
| VO | LDO2 output voltage range | 1 | 3.3 | V | ||
| IO | Maximum output current for LDO1, LDO2 | 200 | mA | |||
| I(SC) | LDO1 and LDO2 short-circuit Current limit |
VLDO1 = GND, VLDO2 = GND | 400 | mA | ||
| Minimum voltage drop at LDO1, LDO2 | IO = 50 mA, VINLDO = 1.8 V | 120 | mV | |||
| IO = 50 mA, VINLDO = 1.5 V | 65 | 150 | ||||
| IO = 200 mA, VINLDO = 1.8 V | 300 | |||||
| Output voltage accuracy for LDO1, LDO2 | IO = 10 mA | –2% | 1% | |||
| Line regulation for LDO1, LDO2 | VINLDO1,2 = VLDO1, 2 + 0.5 V (min. 2.5 V) to 6.5 V, IO = 10 mA |
–1% | 1% | |||
| Load regulation for LDO1, LDO2 | IO = 0 mA to 50 mA | –1% | 1% | |||
| Regulation time for LDO1, LDO2 | Load change from 10% to 90% | 10 | μs | |||
| ANALOGIC SIGNALS DEFDCDC1, DEFDCDC2, DEFDCDC3 | ||||||
| VIH | High level input voltage | 1.3 | VCC | V | ||
| VIL | Low level input voltage | 0 | 0.1 | V | ||
| IH | Input bias current | 0.001 | 0.05 | μA | ||
| LOGIC SIGNALS PB_IN; PB_OUT | ||||||
| VOL | Low level output voltage at PB_OUT | IOL = 20 mA | 0.5 | V | ||
| VOH | High level output voltage PB_OUT | 6 | V | |||
| VIL | Low level input voltage PB_IN | 0.4 | V | |||
| VIH | High level input voltage PB_IN | 1.3 | VCC (1) | V | ||
| II Input leakage current PB_IN | 1 | μA | ||||
| THERMAL SHUTDOWN | ||||||
| T(SD) | Thermal shutdown | Increasing junction temperature | 160 | °C | ||
| Thermal shutdown hysteresis | Decreasing junction temperature | 20 | °C | |||
| INTERNAL UNDERVOLTAGE LOCK OUT | ||||||
| UVLO | Internal UVLO | VCC falling | –2% | 2.35 | 2% | V |
| V(UVLO_HYST) | Internal UVLO comparator hysteresis | 120 | mV | |||
| VOLTAGE DETECTOR COMPARATORS | ||||||
| Comparator threshold (PWRFAIL_SNS, LOWBAT_SNS) |
Falling threshold | –1% | 1.0 | 1% | V | |
| Hysteresis | 40 | 50 | 60 | mV | ||
| Propagation delay | 25-mV overdrive | 10 | μs | |||
| POWER-GOOD | ||||||
| V(PGOODF) | VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, decreasing | –12% | –10% | –8% | ||
| V(PGOODR) | VDCDC1, VDCDC2, VDCDC3, VLDO1, VLDO2, increasing | –7% | –5% | –3% | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| I(qPFM) | Operating quiescent current, PFM | All 3 DCDC converters enabled, zero load and no switching, LDOs enabled | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
85 | 100 | μA | |
| All 3 DCDC converters enabled, zero load and no switching, LDOs enabled | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
78 | 90 | ||||
| DCDC1 and DCDC2 converters enabled, zero load and no switching, LDOs off | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
57 | 70 | ||||
| DCDC1 converter enabled, zero load and no switching, LDOs off | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
43 | 55 | ||||
| II | Current into VCC; PWM | All 3 DCDC converters enabled and running in PWM, LDOs off | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
2 | 3 | mA | |
| DCDC1 and DCDC2 converters enabled and running in PWM, LDOs off | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
1.5 | 2.5 | ||||
| DCDC1 converter enabled and running in PWM, LDOs off | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
0.85 | 2 | ||||
| I(q) | Quiescent current | All converters disabled, LDOs off | VCC = 3.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
23 | 33 | μA | |
| All converters disabled, LDOs off | VCC = 2.6 V, VBACKUP = 3 V; V(VSYSIN) = 0 V |
3.5 | 5 | μA | |||
| All converters disabled, LDOs off | VCC = 3.6 V, VBACKUP = 0 V; V(VSYSIN) = 0 V |
43 | μA | ||||
| PARAMETER | TEST CONDITIONS | MIN | TYP(2) | MAX | UNIT | |
|---|---|---|---|---|---|---|
| VBACKUP, VSYSIN, VRTC | ||||||
| I(q) | Operating quiescent current | VBACKUP = 3 V, VSYSIN = 0 V; VCC = 2.6 V, current into VBACKUP |
20 | 33 | μA | |
| I(SD) | Operating quiescent current | VBACKUP < V_VBACKUP, current into VBACKUP | 2 | 3 | μA | |
| VRTC LDO output voltage | VSYSIN = VBACKUP = 0 V, IO = 0 mA | 3 | V | |||
| IO | Output current for VRTC | VSYSIN < 2.57 V and VBACKUP < 2.57 V | 20 | mA | ||
| VRTC short-circuit current limit | VRTC = GND; VSYSIN = VBACKUP = 0 V | 100 | mA | |||
| Maximum output current at VRTC for RESPWRON = 1 | VRTC > 2.6 V, VCC = 3 V; VSYSIN = VBACKUP = 0 V |
30 | mA | |||
| VO | Output voltage accuracy for VRTC | VSYSIN = VBACKUP = 0 V; IO = 0 mA | ±1% | |||
| Line regulation for VRTC | VCC = VRTC + 0.5 V to 6.5 V, IO = 5 mA | ±1% | ||||
| Load regulation VRTC | IO = 1 mA to 20 mA; VSYSIN = VBACKUP = 0 V |
±2% | ||||
| Regulation time for VRTC | Load change from 10% to 90% | 10 | μs | |||
| Ilkg | Input leakage current at VSYSIN | VSYSIN < V_VSYSIN | 2 | μA | ||
| rDS(on) of VSYSIN switch | 12.5 | Ω | ||||
| rDS(on) of VBACKUP switch | 12.5 | Ω | ||||
| Input voltage range at VBACKUP(1) | 2.73 | 3.75 | V | |||
| Input voltage range at VSYSIN(1) | 2.73 | 3.75 | V | |||
| VSYSIN threshold | VSYSIN falling | –3% | 2.55 | 3% | V | |
| VSYSIN threshold | VSYSIN rising | –3% | 2.65 | 3% | V | |
| VBACKUP threshold | VBACKUP falling | –3% | 2.55 | 3% | V | |
| VBACKUP threshold | VBACKUP falling | –3% | 2.65 | 3% | V | |
| VINLDO | ||||||
| I(q) | Operating quiescent current | Current per LDO into VINLDO | 16 | 30 | μA | |
| I(SD) | Shutdown current | Total current for both LDOs into VINLDO, VLDO = 0 V | 0.1 | 1 | μA | |
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VI | Input voltage range, VINDCDC1 | 2.5 | 6 | V | |||
| IO | Maximum output current | 1200 | mA | ||||
| I(SD) | Shutdown supply current in VINDCDC1 | DCDC1_EN = GND | 0.1 | 1 | μA | ||
| rDS(on) | P-channel MOSFET on-resistance | VINDCDC1 = V(GS) = 3.6 V | 125 | 261 | mΩ | ||
| Ilkg | P-channel leakage current | VINDCDC1 = 6 V | 2 | μA | |||
| rDS(on) | N-channel MOSFET on-resistance | VINDCDC1 = V(GS) = 3.6 V | 130 | 260 | mΩ | ||
| Ilkg | N-channel leakage current | V(DS) = 6 V | 7 | 10 | μA | ||
| Forward current limit (P- and N-channel) | 2.5 V < VI(MAIN) < 6 V | 1.55 | 1.75 | 1.95 | A | ||
| fS | Oscillator frequency | 1.3 | 1.5 | 1.7 | MHz | ||
| Fixed output voltage FPWMDCDC1=0 | 3 V | VINDCDC1 = 3.3 V to 6 V; 0 mA ≤ IO ≤ 1.2 A |
–2% | 2% | |||
| 3.3 V | VINDCDC1 = 3.6 V to 6 V; 0 mA ≤ IO ≤ 1.2 A |
–2% | 2% | ||||
| Fixed output voltage FPWMDCDC1=1 | 3 V | VINDCDC1 = 3.3 V to 6 V; 0 mA ≤ IO ≤ 1.2 A |
–1% | 1% | |||
| 3.3 V | VINDCDC1 = 3.6 V to 6 V; 0 mA ≤ IO ≤ 1.2 A |
–1% | 1% | ||||
| Adjustable output voltage with resistor divider at DEFDCDC1 FPWMDCDC1=0 | VINDCDC1 = VDCDC1 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1.2 A | –2% | 2% | ||||
| Adjustable output voltage with resistor divider at DEFDCDC1; FPWMDCDC1=1 | VINDCDC1 = VDCDC1 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1.2 A | –1% | 1% | ||||
| Line Regulation | VINDCDC1 = VDCDC1 + 0.3 V (min. 2.5 V) to 6 V; IO = 10 mA | 0% | V | ||||
| Load Regulation | IO = 10 mA to 1200 mA | 0.25% | A | ||||
| Soft-start ramp time | VDCDC1 ramping from 5% to 95% of target value | 750 | μs | ||||
| Internal resistance from L1 to GND | 1 | MΩ | |||||
| VDCDC1 discharge resistance | 300 | Ω | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VI | Input voltage range, VINDCDC2 | 2.5 | 6 | V | |||
| IO | Maximum output current | 1000 | mA | ||||
| I(SD) | Shutdown supply current in VINDCDC2 | DCDC2_EN = GND | 0.1 | 1 | μA | ||
| rDS(on) | P-channel MOSFET on-resistance | VINDCDC2 = V(GS) = 3.6 V | 140 | 300 | mΩ | ||
| Ilkg | P-channel leakage current | VINDCDC2 = 6 V | 2 | μA | |||
| rDS(on) | N-channel MOSFET on-resistance | VINDCDC2 = V(GS) = 3.6 V | 150 | 297 | mΩ | ||
| Ilkg | N-channel leakage current | V(DS) = 6 V | 7 | 10 | μA | ||
| ILIMF | Forward current limit (P- and N-channel) | 2.5 V < VINDCDC2 < 6 V | 1.4 | 1.55 | 1.7 | A | |
| fS | Oscillator frequency | 1.3 | 1.5 | 1.7 | MHz | ||
| Fixed output voltage FPWMDCDC2=0 | 1.8 V | VINDCDC2 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 1 A |
–2% | 2% | |||
| 2.5 V | VINDCDC2 = 2.8 V to 6 V; 0 mA ≤ IO ≤ 1 A |
–2% | 2% | ||||
| Fixed output voltage FPWMDCDC2=1 | 1.8 V | VINDCDC2 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 1 A |
–2% | 2% | |||
| 2.5 V | VINDCDC2 = 2.8 V to 6 V; 0 mA ≤ IO ≤ 1 A |
–1% | 1% | ||||
| Adjustable output voltage with resistor divider at DEFDCDC2 FPWMDCDC2=0 | VINDCDC2 = VDCDC2 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1 A | –2% | 2% | ||||
| Adjustable output voltage with resistor divider at DEFDCDC2; FPWMDCDC2=1 | VINDCDC2 = VDCDC2 +0.3 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 1 A | –1% | 1% | ||||
| Line Regulation | VINDCDC2 = VDCDC2 + 0.3 V (min. 2.5 V) to 6 V; IO = 10 mA | 0% | V | ||||
| Load Regulation | IO = 10 mA to 1 mA | 0.25% | A | ||||
| Soft-start ramp time | VDCDC2 ramping from 5% to 95% of target value | 750 | μs | ||||
| Internal resistance from L2 to GND | 1 | MΩ | |||||
| VDCDC2 discharge resistance | 300 | Ω | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VI | Input voltage range, VINDCDC3 | 2.5 | 6 | V | |||
| IO | Maximum output current | 800 | mA | ||||
| I(SD) | Shutdown supply current in VINDCDC3 | DCDC3_EN = GND | 0.1 | 1 | μA | ||
| rDS(on) | P-channel MOSFET on-resistance | VINDCDC3 = V(GS) = 3.6 V | 310 | 698 | mΩ | ||
| Ilkg | P-channel leakage current | VINDCDC3 = 6 V | 0.1 | 2 | μA | ||
| rDS(on) | N-channel MOSFET on-resistance | VINDCDC3 = V(GS) = 3.6 V | 220 | 503 | mΩ | ||
| Ilkg | N-channel leakage current | V(DS) = 6 V | 7 | 10 | μA | ||
| Forward current limit (P- and N-channel) | 2.5 V < VINDCDC3 < 6 V | 1.05 | 1.2 | 1.35 | A | ||
| fS | Oscillator frequency | 1.3 | 1.5 | 1.7 | MHz | ||
| Fixed output voltage FPWMDCDC3=0 | All VDCDC3 | VINDCDC3 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 600 mA |
–2% | 2% | |||
| Fixed output voltage FPWMDCDC3=1 | VINDCDC3 = 2.5 V to 6 V; 0 mA ≤ IO ≤ 600 mA |
–1% | 1% | ||||
| Adjustable output voltage with resistor divider at DEFDCDC3 FPWMDCDC3=0 | VINDCDC3 = VDCDC3 +0.4 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 600 mA | –2% | 2% | ||||
| Adjustable output voltage with resistor divider at DEFDCDC3; FPWMDCDC3=1 | VINDCDC3 = VDCDC3 +0.4 V (min 2.5 V) to 6 V; 0 mA ≤ IO ≤ 600 mA | –1% | 1% | ||||
| Line Regulation | VINDCDC3 = VDCDC3 + 0.3 V (min. 2.5 V) to 6 V; IO = 10 mA | 0% | V | ||||
| Load Regulation | IO = 10 mA to 400 mA | 0.25% | A | ||||
| Soft-start ramp time | VDCDC3 ramping from 5% to 95% of target value | 750 | μs | ||||
| Internal resistance from L3 to GND | 1 | MΩ | |||||
| VDCDC3 discharge resistance | 300 | Ω | |||||
Figure 1. HOT_RESET Timing
Figure 2. Power-Up and Power-Down Timing
Figure 3. DVS Timing
Figure 4. PB-ON-OFF Timing
Figure 5. Serial I/F Timing
| FIGURE | |||
|---|---|---|---|
| η | Efficiency vs Output current | Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 | |
| Line transient response | Figure 13, Figure 14, Figure 15 | ||
| Load transient response | Figure 16, Figure 17, Figure 18 | ||
| VDCDC2 PFM operation | Figure 19 | ||
| VDCDC2 low ripple PFM operation | Figure 20 | ||
| VDCDC2 PWM operation | Figure 21 | ||
| Startup VDCDC1, VDCDC2 and VDCDC3 | Figure 22 | ||
| Startup LDO1 and LDO2 | Figure 23 | ||
| Line transient response | Figure 24, Figure 25, Figure 26 | ||
| Load transient response | Figure 27, Figure 28, Figure 29 | ||
Figure 6. DCDC1: Efficiency vs Output Current
Figure 8. DCDC2: Efficiency vs Output Current
Figure 10. DCDC3: Efficiency vs Output Current
Figure 12. DCDC3: Efficiency vs Output Current
Figure 14. VDCDC2 Line Transient Response
Figure 16. VDCDC1 Load Transient Response
Figure 18. VDCDC3 Load Transient Response
Figure 20. VDCDC2 Output Voltage Ripple
Figure 22. Startup VDCDC1, VDCDC2, and VDCDC3
Figure 24. LDO1 Line Transient Response
Figure 26. VRTC Line Transient Response
Figure 28. LDO2 Load Transient Response
Figure 7. DCDC1: Efficiency vs Output Current
Figure 9. DCDC2: Efficiency vs Output Current
Figure 11. DCDC3: Efficiency vs Output Current
Figure 15. VDCDC3 Line Transient Response
Figure 17. VDCDC2 Load Transient Response
Figure 21. VDCDC2 Output Voltage Ripple
Figure 23. Startup LDO1 and LDO2
Figure 25. LDO2 Line Transient Response
Figure 27. LDO1 Load Transient Response
Figure 29. VRTC Load Transient Response