SLAS421B April 2004 – November 2016 MSP430F423 , MSP430F425 , MSP430F427
PRODUCTION DATA.
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| Voltage applied at VCC to VSS | –0.3 | 4.1 | V | ||
| Voltage applied to any pin(2) | –0.3 | VCC + 0.3 | V | ||
| Diode current at any device terminal | ±2 | mA | |||
| Storage temperature range, Tstg | Unprogrammed device | –55 | 150 | °C | |
| Programmed device | –40 | 85 | |||
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±1000 | V |
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±250 | |||
| MIN | NOM | MAX | UNIT | ||||
|---|---|---|---|---|---|---|---|
| VCC | Supply voltage during program execution(1) (AVCC = DVCC = VCC) | SD16 disabled | 1.8 | 3.6 | V | ||
| SVS enabled, PORON = 1(2), SD16 disabled | 2.0 | 3.6 | |||||
| SD16 enabled or during programming of flash memory | 2.7 | 3.6 | |||||
| VSS | Supply voltage (AVSS = DVSS = VSS) | 0 | 0 | V | |||
| TA | Operating free-air temperature range | –40 | 85 | °C | |||
| f(LFXT1) | LFXT1 crystal frequency(3) | LF selected, XTS_FLL = 0 | Watch crystal | 32.768 | kHz | ||
| XT1 selected, XTS_FLL = 1 | Ceramic resonator | 450 | 8000 | ||||
| XT1 selected, XTS_FLL = 1 | Crystal | 1000 | 8000 | ||||
| f(System) | Processor frequency (signal MCLK) (also see Figure 5-1) | VCC = 1.8 V | DC | 4.15 | MHz | ||
| VCC = 3.6 V | DC | 8 | |||||
Figure 5-1 Frequency vs Supply Voltage
| PARAMETER | TA | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| I(AM) | Active mode (AM) f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz, f(ACLK) = 32768 Hz, XTS_FLL = 0, program executes in flash |
–40°C to 85°C | 3 V | 400 | 500 | µA | |
| I(LPM0) | Low-power mode 0 or 1 (LPM0 or LPM1)(2)
f(MCLK) = f(SMCLK) = f(DCO) = 1 MHz, f(ACLK) = 32768 Hz, XTS_FLL = 0, FN_8 = FN_4 = FN_3 = FN_2 = 0 |
–40°C to 85°C | 3 V | 130 | 150 | µA | |
| I(LPM2) | Low-power mode 2 (LPM2)(2) | –40°C to 85°C | 3 V | 10 | 22 | µA | |
| I(LPM3) | Low-power mode 3 (LPM3) (2) | –40°C | 3 V | 1.5 | 2.0 | µA | |
| 25°C | 1.6 | 2.1 | |||||
| 60°C | 1.7 | 2.2 | |||||
| 85°C | 2.0 | 3.5 | |||||
| I(LPM4) | Low-power mode 4 (LPM4)(2) | –40°C | 3 V | 0.1 | 0.5 | µA | |
| 25°C | 0.1 | 0.5 | |||||
| 85°C | 0.8 | 2.5 | |||||
Current consumption of active mode versus system frequency:
I(AM) = I(AM) [at 1 MHz] × f(System) [MHz]
Current consumption of active mode versus supply voltage:
I(AM) = I(AM) [at 3 V] + 170 µA/V × (VCC – 3 V)
| PARAMETER | VALUE | UNIT | |
|---|---|---|---|
| RθJA | Junction-to-ambient thermal resistance, still air(1) | 55.7 | °C/W |
| RθJC(TOP) | Junction-to-case (top) thermal resistance(2) | 16.7 | °C/W |
| RθJB | Junction-to-board thermal resistance(3) | 27.1 | °C/W |
| ΨJB | Junction-to-board thermal characterization parameter | 26.8 | °C/W |
| ΨJT | Junction-to-top thermal characterization parameter | 0.8 | °C/W |
| PARAMETER | VCC | MIN | MAX | UNIT | |
|---|---|---|---|---|---|
| VIT+ | Positive-going input threshold voltage | 3 V | 1.5 | 1.98 | V |
| VIT- | Negative-going input threshold voltage | 3 V | 0.9 | 1.3 | V |
| Vhys | Input voltage hysteresis (VIT+ - VIT- ) | 3 V | 0.45 | 1 | V |
| PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
|---|---|---|---|---|---|---|
| t(int) | External interrupt timing | Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag(1) | 3 V | 1.5 | cycle | |
| 50 | ns | |||||
| t(cap) | Timer_A capture timing | TAx | 3 V | 50 | ns | |
| f(TAext) | Timer_A clock frequency externally applied to pin | TAxCLK, INCLK t(H) = t(L) | 3 V | 10 | MHz | |
| f(TAint) | Timer_A clock frequency | SMCLK or ACLK signal selected | 3 V | 10 | MHz | |
| PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
|---|---|---|---|---|---|---|
| Ilkg(P1.x) | Leakage current, Port P1.x | Port 1: V(P1.x) (2) | 3 V | ±50 | nA | |
| Ilkg(P2.x) | Leakage current, Port P2.x | Port 2: V(P2.x) (2) | 3 V | ±50 | nA | |
| PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
|---|---|---|---|---|---|---|
| VOH | High-level output voltage | IOH(max) = –1.5 mA(1) | 3 V | VCC – 0.25 | VCC | V |
| IOH(max) = –6 mA(2) | 3 V | VCC – 0.6 | VCC | |||
| VOL | Low-level output voltage | IOL(max) = 1.5 mA(1) | 3 V | VSS | VSS + 0.25 | V |
| IOL(max) = 6 mA(2) | 3 V | VSS | VSS + 0.6 | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| f(Px.y) | Output frequency (1 ≤ × ≤ 2, 0 ≤ y ≤ 7) |
CL = 20 F, IL = ±1.5 mA, VCC = 3 V | DC | 12 | MHz | ||
| f(ACLK), | P1.1/TA0/MCLK, P1.5/TACLK/ACLK/S28 |
CL = 20 pF, VCC = 3 V | 12 | MHz | |||
| f(MCLK), | |||||||
| f(SMCLK) | |||||||
| t(Xdc) | Duty cycle of output frequency | P1.5/TACLK/ACLK/S28, CL = 20 pF, VCC = 3 V |
fACLK = fLFXT1 = fXT1 | 40% | 60% | ||
| fACLK = fLFXT1 = fLF | 30% | 70% | |||||
| fACLK = fLFXT1 | 50% | ||||||
| P1.1/TA0/MCLK, CL = 20 pF, VCC = 3 V, fMCLK = fDCOCLK |
50% – 15 ns | 50% | 50% + 15 ns | ||||
Figure 5-2 through Figure 5-5 show the typical output currents of Ports P1 and P2. One output loaded at a time.
Figure 5-2 Typical Low-Level Output Current vs
Figure 5-4 Typical High-Level Output Current vs
Figure 5-3 Typical Low-Level Output Current vs
Figure 5-5 Typical High-Level Output Current vs | PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | ||
|---|---|---|---|---|---|---|
| td(LPM3) | Delay time | f = 1 MHz | VCC = 3 V | 6 | µs | |
| f = 2 MHz | 6 | |||||
| f = 3 MHz | 6 | |||||
| PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | ||
|---|---|---|---|---|---|---|
| VRAMh | CPU halted(1) | 1.6 | V | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| V(33) | Analog voltage | Voltage at R33 | VCC = 3 V | 2.5 | VCC + 0.2 | V | |
| V(23) | Voltage at R23 | [V(33) – V(03)] × 2/3 + V(03) | |||||
| V(13) | Voltage at R13 | [V(33) – V(03)] × 1/3 + V(03) | |||||
| V(33) – V(03) | Voltage at R33 to R03 | 2.5 | VCC + 0.2 | ||||
| I(R03) | Input leakage | R03 = VSS | No load at all segment and common lines, VCC = 3 V |
±20 | nA | ||
| I(R13) | R13 = VCC / 3 | ±20 | |||||
| I(R23) | R23 = 2 × VCC / 3 | ±20 | |||||
| V(Sxx0) | Segment line voltage | I(Sxx) = –3 µA, VCC = 3 V | V(03) | V(03) – 0.1 | V | ||
| V(Sxx1) | V(13) | V(13) – 0.1 | |||||
| V(Sxx2) | V(23) | V(23) – 0.1 | |||||
| V(Sxx3) | V(33) | V(33) + 0.1 | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| t(τ) | USART0 deglitch time | VCC = 3 V, SYNC = 0, UART mode | 150 | 280 | 500 | ns |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| td(BOR) | Brownout(2) | 2000 | µs | |||
| VCC(start) | dVCC/dt ≤ 3 V/s (see Figure 5-6) | 0.7 × V(B_IT– ) | V | |||
| V(B_IT–) | dVCC/dt ≤ 3 V/s (see Figure 5-6 through Figure 5-8) | 1.71 | V | |||
| Vhys(B_IT–) | dVCC/dt ≤ 3 V/s (see Figure 5-6) | 70 | 130 | 180 | mV | |
| t(reset) | Pulse duration needed at RST/NMI pin to accept reset internally, VCC = 3 V | 2 | µs | |||
Figure 5-6 POR and BOR vs Supply Voltage
Figure 5-7 VCC(drop) Level With a Rectangular Voltage Drop to Generate a POR or BOR Signal
Figure 5-8 VCC(drop) Level With a Triangular Voltage Drop to Generate a POR or BOR Signal
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| t(SVSR) | dVCC/dt > 30 V/ms (see Figure 5-9) | 5 | 150 | µs | ||
| dVCC/dt ≤ 30 V/ms | 2000 | |||||
| td(SVSon) | SVS on, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V | 20 | 150 | µs | ||
| tsettle | VLD ≠ 0(2) | 12 | µs | |||
| V(SVSstart) | VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 5-9) | 1.55 | 1.7 | V | ||
| Vhys(SVS_IT–) | VCC/dt ≤ 3 V/s (see Figure 5-9) | VLD = 1 | 70 | 120 | 155 | mV |
| VLD = 2 to 14 | V(SVS_IT–) × 0.004 | V(SVS_IT–) × 0.008 | ||||
| VCC/dt ≤ 3 V/s (see Figure 5-9), external voltage applied on P2.3 | VLD = 15 | 4.4 | 10.4 | mV | ||
| V(SVS_IT–) | VCC/dt ≤ 3 V/s (see Figure 5-9) | VLD = 1 | 1.8 | 1.9 | 2.05 | V |
| VLD = 2 | 1.94 | 2.1 | 2.25 | |||
| VLD = 3 | 2.05 | 2.2 | 2.37 | |||
| VLD = 4 | 2.14 | 2.3 | 2.48 | |||
| VLD = 5 | 2.24 | 2.4 | 2.6 | |||
| VLD = 6 | 2.33 | 2.5 | 2.71 | |||
| VLD = 7 | 2.46 | 2.65 | 2.86 | |||
| VLD = 8 | 2.58 | 2.8 | 3 | |||
| VLD = 9 | 2.69 | 2.9 | 3.13 | |||
| VLD = 10 | 2.83 | 3.05 | 3.29 | |||
| VLD = 11 | 2.94 | 3.2 | 3.42 | |||
| VLD = 12 | 3.11 | 3.35 | 3.61(1) | |||
| VLD = 13 | 3.24 | 3.5 | 3.76(1) | |||
| VLD = 14 | 3.43 | 3.7(1) | 3.99(1) | |||
| VCC/dt ≤ 3 V/s (see Figure 5-9), external voltage applied on P2.3 | VLD = 15 | 1.1 | 1.2 | 1.3 | ||
| ICC(SVS)(3) | VLD ≠ 0, VCC = 2.2 V or 3 V | 10 | 15 | µA | ||
Figure 5-9 SVS Reset (SVSR) vs Supply Voltage
Figure 5-10 VCC(drop) With a Rectangular Voltage Drop and a Triangular Voltage Drop to Generate an SVS Signal
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT |
|---|---|---|---|---|---|---|
| f(DCOCLK) | N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0, fCrystal = 32.768 kHz | 3 V | 1 | MHz | ||
| f(DCO = 2) | FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 | 3 V | 0.3 | 0.7 | 1.3 | MHz |
| f(DCO = 27) | FN_8 = FN_4 = FN_3 = FN_2 = 0, DCOPLUS = 1 | 3 V | 2.7 | 6.1 | 11.3 | MHz |
| f(DCO = 2) | FN_8 = FN_4 = FN_3 = FN_2 = 1, DCOPLUS = 1 | 3 V | 0.8 | 1.5 | 2.5 | MHz |
| f(DCO = 27) | FN_8 = FN_4 = FN_3 = FN_2 = 1, DCOPLUS = 1 | 3 V | 6.5 | 12.1 | 20 | MHz |
| f(DCO = 2) | FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 | 3 V | 1.3 | 2.2 | 3.5 | MHz |
| f(DCO = 27) | FN_8 = FN_4 = 0, FN_3 = 1, FN_2 = x, DCOPLUS = 1 | 3 V | 10.3 | 17.9 | 28.5 | MHz |
| f(DCO = 2) | FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 | 3 V | 2.1 | 3.4 | 5.2 | MHz |
| f(DCO = 27) | FN_8 = 0, FN_4 = 1, FN_3 = FN_2 = x, DCOPLUS = 1 | 3 V | 16 | 26.6 | 41 | MHz |
| f(DCO = 2) | FN_8 = 1, FN_4 = 1 = FN_3 = FN_2 = x, DCOPLUS = 1 | 3 V | 4.2 | 6.3 | 9.2 | MHz |
| f(DCO = 27) | FN_8 = 1, FN_4 = 1 = FN_3 = FN_2 = x, DCOPLUS = 1 | 3 V | 30 | 46 | 70 | MHz |
| Sn | Step size (ratio) between adjacent DCO taps: Sn = fDCO(Tap n+1)/fDCO(Tap n) (see Figure 5-12 for taps 21 to 27) |
1 < TAP ≤ 20 | 1.06 | 1.11 | ||
| TAP = 27 | 1.07 | 1.17 | ||||
| Dt | Temperature drift, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 | 3 V | –0.2 | –0.3 | –0.4 | %/°C |
| DV | Drift with VCC variation, N(DCO) = 01Eh, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 | 0 | 5 | 15 | %/V |
Figure 5-11 DCO Frequency vs Supply Voltage (VCC) and vs Ambient Temperature
Figure 5-12 DCO Tap Step Size
Figure 5-13 Five Overlapping DCO Ranges Controlled by FN_x Bits
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| CXIN | Integrated input capacitance(4) | OSCCAPx = 0h | 3 V | 0 | pF | ||
| OSCCAPx = 1h | 10 | ||||||
| OSCCAPx = 2h | 14 | ||||||
| OSCCAPx = 3h | 18 | ||||||
| CXOUT | Integrated output capacitance(4) | OSCCAPx = 0h | 3 V | 0 | pF | ||
| OSCCAPx = 1h | 10 | ||||||
| OSCCAPx = 2h | 14 | ||||||
| OSCCAPx = 3h | 18 | ||||||
| VIL | Input levels at XIN(3) | 3 V | VSS | 0.2 × VCC | V | ||
| VIH | 0.8 × VCC | VCC | |||||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|---|
| AVCC | Analog supply voltage | AVCC = DVCC, AVSS = DVSS = 0 V | 2.7 | 3.6 | V | |||
| ISD16 | Analog supply current: 1 active SD16 channel including internal reference | SD16LP = 0, fSD16 = 1 MHz, SD16OSR = 256 |
GAIN: 1, 2 | 3 V | 650 | 950 | µA | |
| GAIN: 4, 8, 16 | 730 | 1100 | ||||||
| GAIN: 32 | 1050 | 1550 | ||||||
| SD16LP = 1, fSD16 = 0.5 MHz, SD16OSR = 256 |
GAIN: 1 | 620 | 930 | |||||
| GAIN: 32 | 700 | 1060 | ||||||
| fSD16 | Analog front-end input clock frequency | SD16LP = 0 (low-power mode disabled) | 1 | MHz | ||||
| SD16LP = 1 (low-power mode enabled) | 0.5 | |||||||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VID | Differential input voltage range for specified performance(2) | SD16GAINx = 1, SD16REFON = 1 | ±500 | mV | |||
| SD16GAINx = 2, SD16REFON = 1 | ±250 | ||||||
| SD16GAINx = 4, SD16REFON = 1 | ±125 | ||||||
| SD16GAINx = 8, SD16REFON = 1 | ±62 | ||||||
| SD16GAINx = 16, SD16REFON = 1 | ±31 | ||||||
| SD16GAINx = 32, SD16REFON = 1 | ±15 | ||||||
| ZI | Input impedance (one input pin to AVSS) |
fSD16 = 1 MHz, SD16GAINx = 1 | 3 V | 200 | kΩ | ||
| fSD16 = 1 MHz, SD16GAINx = 32 | 75 | ||||||
| ZID | Differential input impedance (IN+ to IN−) |
fSD16 = 1 MHz, SD16GAINx = 1 | 3 V | 300 | 400 | kΩ | |
| fSD16 = 1 MHz, SD16GAINx = 32 | 100 | 150 | |||||
| VI | Absolute input voltage range | AVSS – 1 | AVCC | V | |||
| VIC | Common-mode input voltage range | AVSS – 1 | AVCC | V | |||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|---|
| SINAD | Signal-to-noise + distortion ratio | SD16GAINx = 1, signal amplitude = 500 mV | fIN = 50 Hz or 100 Hz | 3 V | 83.5 | 85 | dB | |
| SD16GAINx = 2, signal amplitude = 250 mV | 81.5 | 84 | ||||||
| SD16GAINx = 4, signal amplitude = 125 mV | 76 | 79.5 | ||||||
| SD16GAINx = 8, signal amplitude = 62 mV | 73 | 76.5 | ||||||
| SD16GAINx = 16, signal amplitude = 31 mV | 69 | 73 | ||||||
| SD16GAINx = 32, signal amplitude = 15 mV | 62 | 69 | ||||||
| G | Nominal gain | SD16GAINx = 1 | 3 V | 0.97 | 1.00 | 1.02 | ||
| SD16GAINx = 2 | 1.90 | 1.96 | 2.02 | |||||
| SD16GAINx = 4 | 3.76 | 3.86 | 3.96 | |||||
| SD16GAINx = 8 | 7.36 | 7.62 | 7.84 | |||||
| SD16GAINx = 16 | 14.56 | 15.04 | 15.52 | |||||
| SD16GAINx = 32 | 27.20 | 28.35 | 29.76 | |||||
| EOS | Offset error | SD16GAINx = 1 | 3 V | ±0.2 | %FSR | |||
| SD16GAINx = 32 | ±1.5 | |||||||
| dEOS/dT | Offset error temperature coefficient | SD16GAINx = 1 | 3 V | ±4 | ±20 | ppm FSR/°C | ||
| SD16GAINx = 32 | ±20 | ±100 | ||||||
| CMRR | Common-mode rejection ratio | SD16GAINx = 1, Common-mode input signal: VID = 500 mV, fIN = 50 Hz or 100 Hz |
3 V | >90 | dB | |||
| SD16GAINx = 32, Common-mode input signal: VID = 16 mV, fIN = 50 Hz or 100 Hz |
>75 | |||||||
| AC PSRR | AC power-supply rejection ratio | SD16GAINx = 1, VCC = 3 V ±100 mV, fVCC = 50 Hz | 3 V | >80 | dB | |||
| XT | Crosstalk | 3 V | <–100 | dB | ||||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| TCSensor | Sensor temperature coefficient | 1.18 | 1.32 | 1.46 | mV/K | ||
| VOffset,sensor | Sensor offset voltage | –100 | 100 | mV | |||
| VSensor | Sensor output voltage(2) | Temperature sensor voltage at TA = 85°C | 3 V | 435 | 475 | 515 | mV |
| Temperature sensor voltage at TA = 25°C | 355 | 395 | 435 | ||||
| Temperature sensor voltage at TA = 0°C | 320 | 360 | 400 | ||||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VREF | Internal reference voltage | SD16REFON = 1, SD16VMIDON = 0 | 3 V | 1.14 | 1.20 | 1.26 | V |
| IREF | Reference supply current | SD16REFON = 1, SD16VMIDON = 0 | 3 V | 175 | 260 | µA | |
| TC | Temperature coefficient | SD16REFON = 1, SD16VMIDON = 0 | 3 V | 20 | 50 | ppm/K | |
| CREF | VREF load capacitance | SD16REFON = 1 SD16VMIDON = 0(1) | 100 | nF | |||
| ILOAD | VREF(I) maximum load current | SD16REFON = 0, SD16VMIDON = 0 | 3 V | ±200 | nA | ||
| tON | Turnon time | SD16REFON = 0 → 1, SD16VMIDON = 0, CREF = 100 nF |
3 V | 5 | ms | ||
| DC PSR | DC power supply rejection, ΔVREF/ΔVCC | SD16REFON = 1, SD16VMIDON = 0, VCC = 2.5 V to 3.6 V |
200 | µV/V | |||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VREF,BUF | Reference buffer output voltage | SD16REFON = 1, SD16VMIDON = 1 | 3 V | 1.2 | V | ||
| IREF,BUF | Reference supply and reference output buffer quiescent current | SD16REFON = 1, SD16VMIDON = 1 | 3 V | 385 | 600 | A | |
| CREF(O) | Required load capacitance on VREF | SD16REFON = 1, SD16VMIDON = 1 | 470 | nF | |||
| ILOAD,Max | Maximum load current on VREF | SD16REFON = 1, SD16VMIDON = 1 | 3 V | ±1 | mA | ||
| Maximum voltage variation versus load current | |ILOAD| = 0 to 1 mA | 3 V | –15 | +15 | mV | ||
| tON | Turnon time | SD16REFON = 0 → 1, SD16VMIDON = 0, CREF = 100 nF |
3 V | 100 | µs | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VREF(I) | Input voltage | SD16REFON = 0 | 3 V | 1.0 | 1.25 | 1.5 | V |
| IREF(I) | Input current | SD16REFON = 0 | 3 V | 50 | nA | ||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| VCC(PGM/ ERASE) | Program and erase supply voltage | 2.7 | 3.6 | V | |||
| fFTG | Flash timing generator frequency | 257 | 476 | kHz | |||
| IPGM | Supply current from DVCC during program | 2.7 V, 3.6 V | 3 | 5 | mA | ||
| IERASE | Supply current from DVCC during erase | 2.7 V, 3.6 V | 3 | 7 | mA | ||
| tCPT | Cumulative program time(1) | 2.7 V, 3.6 V | 10 | ms | |||
| tCMErase | Cumulative mass erase time(2) | 2.7 V, 3.6 V | 200 | ms | |||
| Program and erase endurance | 104 | 105 | cycles | ||||
| tRetention | Data retention duration | TJ = 25°C | 100 | years | |||
| tWord | Word or byte program time(3) | 35 | tFTG | ||||
| tBlock, 0 | Block program time for first byte or word(3) | 30 | |||||
| tBlock, 1–63 | Block program time for each additional byte or word(3) | 21 | |||||
| tBlock, End | Block program end-sequence wait time(3) | 6 | |||||
| tMass Erase | Mass erase time(3) | 5297 | |||||
| tSeg Erase | Segment erase time(3) | 4819 | |||||
| PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|---|
| fTCK | TCK input frequency | See (1) | 2.2 V | 0 | 5 | MHz | |
| 3V | 0 | 10 | |||||
| RInternal | Internal pullup resistance on TMS, TCK, TDI/TCLK | See (2) | 2.2 V, 3 V | 25 | 60 | 90 | kΩ |
| PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |
|---|---|---|---|---|---|
| VCC(FB) | Supply voltage during fuse-blow condition | TA = 25°C | 2.5 | V | |
| VFB | Voltage level on TDI/TCLK for fuse-blow | 6 | 7 | V | |
| IFB | Supply current into TDI/TCLK during fuse blow | 100 | mA | ||
| tFB | Time to blow fuse | 1 | ms | ||