OBSSCircuit DescriptionV1.1010/02/94 20:07 CET.Component & analysis parameters of a circuit.TINA 9.3.150.328 SF-TIB(c) Copyright 1993,94,95,96 DesignSoft Inc. All rights reserved.! $Circuit$p?[VOUT] miny1=10 maxy1=18 divsy1=6 scaley1=0[VIN]miny1=5 maxy1=10 divsy1=4 scaley1=0[All] minx1=0.0024 maxx1=0.0042 divsx1=9 scalex1=0_*??ƚkL/4l'OkL/ EMFL_U iRpMS Sans SerifkwF    MS Sans Serif    :\y4@b#H@bb40 jw Xtjw4XD\v:dv%  '%   TT @ B B LPT % RpArialpJ |Arialpiw@eG01000000000000000#HpJ pJ hz 4L=0; =}DB`1eC"I0PCPCdv%  % RpArial` 1000Arial592TcvЀATcvhv( cv( cv( pJ hz 4L=0; =S!C,V dv%  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % % %  %   +(Z% %   +(Z% &%  6666GG6Gxx6x66% RR&%  6R  6 % RpRp%  6 pRPRP6 PR0R06 0% RR%  6 RR6 % !!%  6!!6!!6!!6G!G!6Gx!x!6x!!6!!6% R!R!%  6R ! !6 % R R %  6  RR6 RR6 RR6 RR6 % R!R!%  6 !RR6 % R!R!&%  6 !% %  &%    T|&@TO@ B B&@L\Time (s) U@% %    TlK-n<@ B BK-LX2.41m o-% ( R!R!%  6R+^!^!6^&j!j!6j&w!w!6w&% &%    Tl|-<@ B B|-LX2.61m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-<@ B B-LX2.81m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-<@ B B-LX3.01m -% ( !!%  6+!!6&!!6& ! !6 &% &%    Tl-2<@ B B-LX3.21m 3-% ( !!%  6+"!"!6"&.!.!6.&;!;!6;&% &%    Tl@-c<@ B B@-LX3.40m d-% ( G!G!%  6G+S!S!6S&`!`!6`&l!l!6l&% &%    Tlq-<@ B Bq-LX3.60mOO -% ( x!x!%  6x+!!6&!!6&!!6&% &%    Tl-<@ B B-LX3.80m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-<@ B B-LX4.00m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-'<@ B B-LX4.20mOO (-% (  ! !%  6 +% RR6R% %  &%    T`BQ@ B BBLTVIN  B% %    Td.F@ B B.LT5.00G% ( II%  6RNN6RNN6RNxNx6Rx% &%    Td.hFw@ B B.hLT6.25Gh% ( IpIp%  6RpNhNh6RhN`N`6R`NXNX6RX% &%    Td.HFW@ B B.HLT7.50GH% ( IPIP%  6RPNHNH6RHN@N@6R@N8N86R8% &%    Td.(F7@ B B.(LT8.75G(% ( I0I0%  6R0N(N(6R(N N 6R NN6R% &%    Tl'F@ B B'LX10.00G% ( II%  6R% R!R!6R% %  &%    Td&@ B BLTVOUT '% % ( %  &%    Tl'F(@ B B'LX15.98OOG% ( I!I!%  6R!NN6RNN6RNN6R% &%    Tl'F@ B B'LX16.30G% ( I I %  6R NN6RNN6RNN6R% &%    Tl'F@ B B'LX16.61G% ( II%  6RNN6RNN6RNN6R% &%    Tl'F@ B B'LX16.93G% ( II%  6RNN6RNN6RNN6R% &%    Tl'F@ B B'LX17.25G% ( II%  6RNN6RNN6RNN6R% &%    Tl'G@ B B'LX17.57G% ( II%  6RNN6RNN6RNN6R% &%    Tl'F@ B B'LX17.88G% ( II%  6R% % RR&%  6VV6[[6__6dd6hh6mm6qq6uu6zz6~~666jj6PP6776666666666666666666666666666666666666666  66666!!6%%6**6..6336776<<6@@6DD6II6MM6RR6VV6[[6__6dd6hh6ll6qq6uu6zz6~~66666666666666666**6CC6XX6rr666666666666666666666666666666 % RR& %  6VV6[[6__6dd6hh6mm6q q 6u u 6z z 6~!~!6!!6  666666666666  6  6666666666666666666666666666666666666666666666666666666666666666  66666!!6%%6**6..6336776<<6@@6DD6II6MM6RR6VV6[[6__6dd6hh6ll6qq6uu6zz6~~66666666666666666666666666666666666666666666666666666666666 %  % % % cZG'??ƚkL/4l'OkL/ EMF,Z iRpMS Sans SerifkwF    MS Sans Serif    :\y4@b#H@bb40 jw Xtjw4XD\v:dv%  '%   TT @ B B LPT % RpArialpJ |Arialpiw@eG01000000000000000#HpJ pJ hz 4L=0; =}DB`1eC"I0PCPCdv%  % RpArial` 1000Arial592TcvЀATcvhv( cv( cv( pJ hz 4L=0; =S!C,V dv%  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % %  % % %  %   +(Z% %   +(Z% &%  6666GG6Gxx6x66% RR&%  6R  6 % RpRp%  6 pRPRP6 PR0R06 0% RR%  6 RR6 % !!%  6!!6!!6!!6G!G!6Gx!x!6x!!6!!6% R!R!%  6R ! !6 % R R %  6  RR6 RR6 RR6 RR6 % R!R!%  6 !RR6 % R!R!&%  6 !% %  &%    T|&@TO@ B B&@L\Time (s) U@% %    TlK-n<@ B BK-LX2.40m o-% ( R!R!%  6R+^!^!6^&j!j!6j&w!w!6w&% &%    Tl|-<@ B B|-LX2.60m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-<@ B B-LX2.80m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-<@ B B-LX3.00m -% ( !!%  6+!!6&!!6& ! !6 &% &%    Tl-2<@ B B-LX3.20m 3-% ( !!%  6+"!"!6"&.!.!6.&;!;!6;&% &%    Tl@-c<@ B B@-LX3.40m d-% ( G!G!%  6G+S!S!6S&`!`!6`&l!l!6l&% &%    Tlq-<@ B Bq-LX3.60mOO -% ( x!x!%  6x+!!6&!!6&!!6&% &%    Tl-<@ B B-LX3.80m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-<@ B B-LX4.00m -% ( !!%  6+!!6&!!6&!!6&% &%    Tl-'<@ B B-LX4.20mOO (-% (  ! !%  6 +% RR6R% %  &%    T`BQ@ B BBLTVIN  B% %    Td.F@ B B.LT5.00G% ( II%  6RNN6RNN6RNxNx6Rx% &%    Td.hFw@ B B.hLT6.25Gh% ( IpIp%  6RpNhNh6RhN`N`6R`NXNX6RX% &%    Td.HFW@ B B.HLT7.50GH% ( IPIP%  6RPNHNH6RHN@N@6R@N8N86R8% &%    Td.(F7@ B B.(LT8.75G(% ( I0I0%  6R0N(N(6R(N N 6R NN6R% &%    Tl'F@ B B'LX10.00G% ( II%  6R% R!R!6R% %  &%    Td&@ B BLTVOUT '% % ( %  &%    Tl'F(@ B B'LX10.00OOG% ( I!I!%  6R!NN6RNN6RNN6R% &%    Tl'F@ B B'LX11.33G% ( I I %  6R NN6RNN6RNN6R% &%    Tl'G@ B B'LX12.67G% ( II%  6RNN6RNN6RNN6R% &%    Tl'F@ B B'LX14.00G% ( II%  6RNN6RNN6RNN6R% &%    Tl'F@ B B'LX15.33G% ( II%  6RNN6RNN6RNN6R% &%    Tl'G@ B B'LX16.67G% ( II%  6RNN6RNN6RNN6R% &%    Tl'F@ B B'LX18.00G% ( II%  6R% % SS&%  6WW6\\6``6ee6ii6mm6rr6vv6{{6666ee6LL6226%%666666666666666666666666666666666666  66666  6$$6))6--6226666::6??6CC6HH6LL6QQ6UU6YY6^^6bb6gg6kk6oo6tt6xx6}}66666666666666666  6EE6QQ6kk666666666666666666666666666  6 % S S & %  6W W 6\ \ 6` ` 6e e 6i i 6m m 6r r 6v v 6{!{!6!!6!!6  6666666666666  666666666666666666666666666666  66666  6$$6))6--6226666::6??6CC6HH6LL6QQ6UU6YY6^^6bb6gg6kk6oo6tt6xx6}}6666666666666666666666666666666666666666666666666666666  6    6  %  % % % #VER=1.0Font0=Verdana,14Font1=Verdana,14,BRect0=2,0,0,85,22Rect1=1,0,0,85,10Rect2=1,0,10,10,17Rect3=1,10,10,75,17Rect4=1,75,10,85,17Rect5=1,0,17,50,22Rect6=1,50,17,85,22Text0=0,2,2,TitleText1=0,2,11,SizeText2=0,2,18,DateText3=0,12,11,Document No.Text4=0,77,11,RevText5=0,52,18,SheetText6=0,70,18,ofField0=1,T,11,2,80Field1=1,T,11,5,80Field2=1,S,4,13,5Field3=1,T,14,13,40Field4=1,R,78,13,6Field5=1,D,12,18,30Field6=1,P,64,18,3Field7=1,A,77,18,3F4=1.0F6=1F7=1'F3= Datasheet:SBOS913:F0=XTR305 Industrial Analog Current/Voltage Output DriverF5=Feb. 13, 2018O@O Arial TEST BENCH DESCRIPTION:41. The XTR305 macro-model is in unencrypted format.{2. Above application circuit is developed to test the Transient behaviour of the XTR305 macro-model in voltage output modes and current output mode.To set Voltage output mode M1=0V, M2=0V; for current output mode M1=0V, M2=2V (>1.4V).J3. The testbench for this model is based on the XTR305 datasheet SBOS913.T4. The list of parameters modeled is provided in the comments section of the macro.5. If package number (symbol '9') becomes visible on pins of the IC, then to disable it, Go to View >> Package Numbers option and uncheck it.SIMULATION INFO:>1. Go to Analysis >> Options and enable the following options4 >> 'Disable warning for large size analysis'& >> 'Remember diagram settings']2. Go to Analysis >> Set Analysis Parameters. Click on the hand symbol and Choose 'Default'.s3. For Transient Analysis: Go to Analysis >> Transient >> Choose Start & End Display as 2.4m & 4.2m respectively.x Enable 'Calculate operating point'. Ensure that 'Draw excitation' check box is checked.To run simulation, click OK.N4. These simulations take few seconds to complete on a 4 core 2.8GHz machine.\5. If the waveforms are not clearly visible, in Diagram window, go to View >> Normal zoom.Symbol????333333??)@) Arial XTR305 TINA-TI Reference DesignSymbol????333333??L@L ArialVMODESymbol????333333??@ ArialIMODESymbol????333333???T_0747AE6020180213151325?  T_0747B22020180213151325?px`pxpx`T_0747B5E020180213151325?pppT_0747B9A020180213151325?H`H`T_0747BD6020180213151325?XXXT_0747C12020180213151325;T_0747C4E020180213151325?000T_0747C8A020180213151325;T_0747D3E020180213151325;T_0747DB6020180213151325;T_0747DF2020180213151325;T_0747E2E020180213151325;  T_0747E6A020180213151325;  T_0747EA6020180213151325;HXHXT_0747EE2020180213151325;HXHXT_0747F1E020180213151325?T_0747F5A020180213151325;````T_0747F96020180213151325;``T_0747FD2020180213151325;````T_074800E020180213151325CxxT_074804A020180213151325CT_0748086020180213151325;T_07480C2020180213151325?T_07480FE020180213151325CT_074813A020180213151325;T_0748176020180213151325;T_07481EE020180213151325?XXXT_074822A020180213151325?T_0748266020180213151325;T_07482A2020180213151325;T_074831A020180213151325;0 0@0 0@T_0748356020180213151325;P P@P P@T_0748392020180213151325?`P`PPT_07483CE020180213151325? 0 00T_0748446020180213151325?000T_0748482020180213151325;T_07484BE020180213151325;T_07484FA020180213151325?@`@@``T_0748536020180213151325?@@@T_0748572020180213151325;T_07485AE020180213151325;````T_074701B020180213151325?T_0747057020180213151325;T_0747093020180213151325;HXHXT_07470CF020180213151325;8``8``T_0747147020180213151325;T_0747183020180213151325;T_07471BF020180213151325;T_07471FB020180213151325;  T_0747237020180213151325;````T_0747273020180213151325;x```x```T_07472AF020180213151325;``T_0747363020180213151325;`x``x`T_07473DB020180213151325;T_074748F020180213151325?T_0747507020180213151325;T_0747543020180213151325DB0  V-T_2392E32020120629175542 JP100 (V)4DBP  V+T_2392DD4020120629175542 JP100 (V)4@ B0RIAOUTT_2392D76020120629175542R_AX300_W100 (R)0@@?Y@ B@RIMONT_2392CBA020120629175542R_AX300_W100 (R)0@@?Y@ BRGAINT_2392C5C020120629175542R_AX300_W100 (R)@@?Y@Br`VOUTT_2392BFE020120629175542 NOPCB (VF)#Bs`IOUTT_2392BA0020120629175542 Amet (AM)BsVIN:1T_2392B42020120629175542 NOPCB (VF)DB VM1T_2392A86020120629175542 JP100 (V) BR7T_2392A28020120629175542R_AX300_W100 (R)@@?Y@ BCLT_239296C020120629175542C_RAD200_L300_W100_Red (C)Iz>@eAY@?DBXVODT_239290E020120629175542 JP100 (V)@ BRSETT_23928B0020120629175542R_AX300_W100 (R)@@?Y@ B CcT_2392852020120629175542C_RAD200_L300_W100_Red (C)+ |;i>@eAY@? BRLT_23927F4020120629175542R_AX300_W100 (R)@@?Y@ BR4T_2392796020120629175542R_AX300_W100 (R)@@?Y@DB V1T_2392738020120629175542 JP100 (V)@ BR5T_23926DA020120629175542R_AX300_W100 (R)@@?Y@ B8`R6T_23BB13F020120629175542R_AX300_W100 (R).@@?Y@ BROST_23BBF12020120629175553R_AX300_W100 (R)@@?Y@DB#VOST_23BBF70020120629175558 JP100 (V)@DB VM2T_2392AE4020120629175542 JP100 (V)DB  V2T_115BC5D020120803144559 JP100 (V)@DB  V3T_0965BFB020120803144601 JP100 (V)@B VINT_181182E020120807102118 JP100 (VG)@@:0yE>_LU?:0yE>:0yE>_LU?:0yE>:B@U1T_067AB46020180213153415 XTR305XTR305[C:\Users\a0282827\AppData\Local\Temp\DesignSoft\{Tina10-Industrial-09142017-120157}\XTR305XTR305LabelS[IY Xhd*M1ONUT CURRENT C ( @d*M2OUTT CURRENT C 8 @d*OD_NN-GE SI  @d*RG1IN+name. P @d*RG2ad shap P @d*SETTU2_VEE @d*V+LDU2_VCC  @d*V-CMU1_VEE  @d*VIN_U1_VCC @d*DGNDD OF L PP @d*DRVnd of l P @d*EFCMT OUT  P @d*EFLD 6  P0 @d*EFOTN+5)/1E11WR P@ @d*GNDD(NVR,2)PWR( H @d*IA_IN+ P @d*IA_IN-)+(V(I_M)) P @d*IAOUTD  @d*IMON @fHXg!XTR305Arial333333?edd5e@5e@ * XTR305N*****************************************************************************J* (C) COPYRIGHT 2018 TEXAS INSTRUMENTS INCORPORATED. ALL RIGHTS RESERVED.N*****************************************************************************H** THIS MODEL IS DESIGNED AS AN AID FOR CUSTOMERS OF TEXAS INSTRUMENTS.K** TI AND ITS LICENSORS AND SUPPLIERS MAKE NO WARRANTIES, EITHER EXPRESSEDG** OR IMPLIED, WITH RESPECT TO THIS MODEL, INCLUDING THE WARRANTIES OFF** MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THE MODEL ISK** PROVIDED SOLELY ON AN "AS IS" BASIS. THE ENTIRE RISK AS TO ITS QUALITY)** AND PERFORMANCE IS WITH THE CUSTOMER.N******************************************************************************D* THIS MODEL IS SUBJECT TO CHANGE WITHOUT NOTICE. TEXAS INSTRUMENTS;* INCORPORATED IS NOT RESPONSIBLE FOR UPDATING THIS MODEL.*N******************************************************************************?** RELEASED BY: ANALOG DESIGN SERVICES, TEXAS INSTRUMENTS INC.* PART: XTR305* DATE: 13FEB2018* MODEL TYPE: ALL IN ONE* EVM ORDER NUMBER: N/A* EVM USERS GUIDE: N/A#* DATASHEET: SBOS913FEBRUARY 2018** MODEL VERSION: 1.0*N****************************************************************************** * UPDATES:** VERSION 1.0 :* RELEASE TO WEB*N******************************************************************************BEGIN MODEL XTR305*SIMULATED FEATURES:'*OPEN LOOP GAIN AND PHASE VS FREQUENCY,*INPUT COMMON MODE REJECTION WITH FREQUENCY'*POWER SUPPLY REJECTION WITH FREQUENCY*INPUT IMPEDANCE VS FREQUENCY"*INPUT VOLTAGE NOISE VS FREQUENCY"*INPUT CURRENT NOISE VS FREQUENCY(*OUTPUT VOLTAGE SWING VS OUTPUT CURRENT*SHORT-CIRCUIT OUTPUT CURRENT%*QUIESCENT CURRENT VS SUPPLY VOLTAGE *SLEW RATE*LARGE SIGNAL RESPONSE*OVERLOAD RECOVERY TIME*INPUT BIAS CURRENT*INPUT VOLTAGE OFFSET*INPUT COMMON MODE RANGE0*OUTPUT CURRENT COMING THROUGH THE SUPPLY RAILSN*****************************************************************************8*EFOT PIN SPECIFICATIONS ARE NOT INCLUDED IN THIS MODELO*****************************************************************************TK.SUBCKT XTR305 DGND DRV EFCM EFLD EFOT GND IA_IN+ IA_IN- IAOUT IMON M1 M2+ OD_N RG1 RG2 SET V+ V- VIN3X_S4 I_E32_E20 GND N5431182 IAOUT SCHEMATIC4_S4IX_U8 N5476524 V V_E32_E20 OR2_BASIC_GEN_SAN PARAMS: VDD=1 VEE=0 + VTH=0.5PX_U14 N5483022 N5483331 N5483646 OR2_BASIC_GEN_SAN PARAMS: VDD=1 VEE=0 + VTH=0.5(X_U21 N5492393 GND V I EFLD_VTH(X_U20 GND N5492367 V I EFLD_VTH%R_R4 GND N5492944 1K TC=0,0'X_S1 I GND SET N00380 SCHEMATIC4_S1%R_R9 N5492367 GND 1K TC=0,0PX_U18 N5492457 N5492465 N5492944 OR2_BASIC_GEN_SAN PARAMS: VDD=1 VEE=0 + VTH=0.50X_U19 N5492345 GND V I IOK DRV EFLD_SIG,X_S7 N5492944 GND EFLD GND SCHEMATIC4_S7&R_R10 GND N5492393 1K TC=0,0 V_V3 N5480030 GND 17VDCMX_U6 E20 E32 N5476524 OR2_BASIC_GEN_SAN PARAMS: VDD=1 VEE=0 VTH=0.50L_U_LPSR1 U_PSRR_P U_N5770799 316.76MHKX_U_U24 U_GND_FLOAT U_VIMON U_VEE_CLP U_N507738 VCVS_LIMIT PARAMS:+ GAIN=0.009 VPOS=2 VNEG=-2HX_U_S5 U_GND_FLOAT U_VCC_CLP_ACTIVE U_N471640 U_N471680 OPA_SCH_U_S5AE_U_E36 U_N6302398 U_GND_FLOAT U_IN+_CMRR U_N6308635 0.5IX_U_U26 U_IN_STAGE_IN+ U_IN_STAGE_IN- U_IN_STAGE_OUT U_GND_FLOAT7+ VCCS_LIMIT PARAMS: GAIN=-19.9526M IPOS=.5 INEG=-.5,R_U_R26 U_N11675 U_VIMON 10 TC=0,03X_U_U2A3 U_N6340887 U_N6340881 DIODE_IDEAL?E_U_E35 U_N213578 U_GND_FLOAT U_N161534 U_GND_FLOAT -1 I_U_IS1 V+ V- DC 10MADC4R_U_R70 U_IN_STAGE_IN+ U_N4208914 1 TC=0,04R_U_R6 U_N5906759 U_OVER_CLAMP 0.01 TC=0,0)R_U_R20 VIN U_N5761489 1 TC=0,0HX_U_U_R106 U_N161534 U_GND_FLOAT R_NOISELESS PARAMS: ROHMS=1E6AE_U_E38 U_N6308635 U_GND_FLOAT U_IN-_CMRR U_GND_FLOAT -1KX_U_U23 U_VIMON U_GND_FLOAT U_N501192 U_VCC_CLP VCVS_LIMIT PARAMS:+ GAIN=0.02 VPOS=2 VNEG=-21L_U_LCM U_N5766729 U_N5766687 159.134MH*R_U_R25 U_N342546 U_SC- 1 TC=0,03R_U_RPSR1 U_GND_FLOAT U_N5770799 1 TC=0,0=E_U_E_VCVS6A U_N4232387 U_GND_FLOAT V- U_GND_FLOAT 15R_U_R14 U_N471640 U_VCC_CLP_ACTIVE 1 TC=0,0*R_U_R19 U_N336076 U_SC+ 1 TC=0,03R_U_R22 U_N57948 U_IN_STAGE_IN+ 10 TC=0,0BE_U_E_VCVS3 U_OSTG1 U_GND_FLOAT U_CL__CLAMP U_GND_FLOAT 1;C_U_CCC U_OVER_CLAMP U_GND_FLOAT 160.134N TC=0,0@X_U_S10 U_CL1 U_GND_FLOAT U_V_S13 U_OVER_CLAMP OPA_SCH_U_S10)R_U_R18 SET U_IN-_CMRR 1 TC=0,0GX_U_U_R110 U_N4451298 U_OSTG1 R_NOISELESS PARAMS: ROHMS=112.5,C_U_U_R110 U_N4451298 U_OSTG1 0.4f:C_U_C16 U_VEE_CLP_ACTIVE U_GND_FLOAT 10P TC=0,0/C_U_C21 U_OL- U_GND_FLOAT 10P TC=0,01R_U_RCM U_GND_FLOAT U_N5766687 1 TC=0,09R_U_RCC2 U_GND_FLOAT U_VEE_CLP_ACTIVE 1K TC=0,0=X_U_S1 U_GND_FLOAT U_SC+ U_N336076 U_N356503 OPA_SCH_U_S12R_U_R21 U_GND_FLOAT U_N11154 10E3 TC=0,0BE_U_E_VCVS4A U_N648965 U_GND_FLOAT U_N51073 U_GND_FLOAT 15R_U_R16 U_N471660 U_VEE_CLP_ACTIVE 1 TC=0,0?X_U_H1 U_N4451298 N5508231 U_VIMON U_GND_FLOAT OPA_SCH_U_H12R_U_R1 U_VCC_CLP U_GND_FLOAT 100K TC=0,0LX_U_U3 U_IN+_U22 U_VSENSE U_N5906723 U_GND_FLOAT VCVS_LIMIT PARAMS:!+ GAIN=100 VPOS=6000 VNEG=-6000)R_U_R13 U_OSTG1 U_VCLP 1 TC=0,0*R_U_R7 U_N5906723 U_OL+ 1 TC=0,0-R_U_R33 U_VCLP U_N5907581 1K TC=0,02R_U_R2 U_VEE_CLP U_GND_FLOAT 100K TC=0,08C_U_CINPCM U_N5761489 U_GND_FLOAT 2.5P TC=0,02R_U_R23 U_N10869 U_GND_FLOAT 10E3 TC=0,0MX_U_U_R103 U_IN_STAGE_OUT U_GND_FLOAT R_NOISELESS PARAMS: ROHMS=1E6-X_U_U29 U_IN+_CMRR U_N49600 VNSE_OPA>X_U_S9 U_GND_FLOAT U_CL1 U_OVER_CLAMP U_V_S14 OPA_SCH_U_S9$V_U_V8 U_N507738 V- 1.28VDC+X_U_U30 U_N51073 U_N49600 FEMT_OPA2R_U_R_VCLP U_GND_FLOAT U_OSTG1 1K TC=0,0+C_U_C15 V- U_GND_FLOAT 1N TC=0,0.V_U_VOS U_IN+_CMRR U_N5761489 408UVDC7C_U_CDIFF U_IN-_CMRR U_N5761489 3.75P TC=0,0E_U_E_VCVS6A3 U_N6340901 U_GND_FLOAT V- U_GND_FLOAT 13C_U_C4 U_CL__CLAMP U_GND_FLOAT 1F TC=0,0+C_U_C18 V+ U_GND_FLOAT 1N TC=0,0HX_U_S6 U_VEE_CLP_ACTIVE U_GND_FLOAT U_N471680 U_N471660 OPA_SCH_U_S6)V_U_V6 U_GND_FLOAT U_V_S14 20VDC"E_U_E28 U_N06522 0 V- 0 11X_U_U5 U_N6336684 U_N6336668 DIODE_IDEAL/C_U_C17 U_GND_FLOAT U_SC+ 10P TC=0,0DX_U_U_R102 U_N03790 U_N06522 R_NOISELESS PARAMS: ROHMS=1E63R_U_RPSR2 U_GND_FLOAT U_N5770675 1 TC=0,0+R_U_R12 U_N5906743 U_OL- 1 TC=0,0?G_U_GSINKING V- U_GND_FLOAT U_N10869 U_GND_FLOAT 0.001@E_U_E_VCVS4 U_N57948 U_GND_FLOAT U_N49600 U_GND_FLOAT 15C_U_C13 U_CLAW_CLAMP U_GND_FLOAT 1F TC=0,0-R_U_R34 U_VCLP U_N5907151 1K TC=0,0GX_U_U_R105 U_VSENSE U_GND_FLOAT R_NOISELESS PARAMS: ROHMS=1E66R_U_R70A3 U_N6340881 U_IN_STAGE_IN+ 1 TC=0,05R_U_R22A U_N648965 U_IN_STAGE_IN- 10 TC=0,03R_U_R_VIMON U_VIMON U_GND_FLOAT 1K TC=0,0*V_U_V9 U_N4205961 U_N4206697 3VDC+V_U_V10 U_N6336814 U_N6336668 3VDC#V_U_V7 V+ U_N501192 1.3VDCIX_U_U_RINP U_N5761489 U_GND_FLOAT R_NOISELESS PARAMS: ROHMS=2E8&I_U_IS2 V+ U_N49600 DC 25NADC:X_U_U32 U_GND_FLOAT U_N318039 V I E20 E32 ICL_OPA3R_U_R5 U_N471680 U_CLAW_CLAMP 0.01 TC=0,0.R_U_ROV1 U_GND_FLOAT U_OL+ 1K TC=0,0.R_U_RSC1 U_GND_FLOAT U_SC+ 1K TC=0,0:X_U_U31 U_N317215 U_GND_FLOAT V I E20 E32 ICL_OPA/C_U_C23 U_GND_FLOAT U_VCLP 1F TC=0,04C_U_C9 U_N11675 U_GND_FLOAT 10E-12 TC=0,0?X_U_S4 U_OL- U_GND_FLOAT U_N5906759 U_N5906743 OPA_SCH_U_S42X_U_U2A U_N4230891 U_N4230147 DIODE_IDEAL)V_U_V5 U_V_S13 U_GND_FLOAT 20VDC=X_U_S2 U_SC- U_GND_FLOAT U_N356503 U_N342546 OPA_SCH_U_S2KX_U_U25 U_PSRR_P U_PSRR_N U_IN-_CMRR U_N5766797 VCVS_LIMIT PARAMS:+ GAIN=-1 VPOS=2 VNEG=-2,R_U_R15 0 U_GND_FLOAT 100E6 TC=0,0=X_U_S7 U_N11675 U_GND_FLOAT U_VIMON U_N10869 OPA_SCH_U_S7.R_U_RSC2 U_GND_FLOAT U_SC- 1K TC=0,0:C_U_C12 U_GND_FLOAT U_VCC_CLP_ACTIVE 10P TC=0,09R_U_RCC1 U_GND_FLOAT U_VCC_CLP_ACTIVE 1K TC=0,0JX_U_U_R109 U_CL__CLAMP U_GND_FLOAT R_NOISELESS PARAMS: ROHMS=1E3.R_U_ROV2 U_GND_FLOAT U_OL- 1K TC=0,0.C_U_C22 U_GND_FLOAT U_CL1 1p TC=0,0BE_U_E_VCVSCM U_N5766797 U_N51073 U_N5766729 U_GND_FLOAT 12R_U_R4 U_N356503 U_CL__CLAMP 0.01 TC=0,0KX_U_U_R104 U_OVER_CLAMP U_GND_FLOAT R_NOISELESS PARAMS: ROHMS=1E6+V_U_V9A U_N4230891 U_N4232387 3VDC1X_U_U2 U_N4208914 U_N4206697 DIODE_IDEALKX_U_U_R108 U_CLAW_CLAMP U_GND_FLOAT R_NOISELESS PARAMS: ROHMS=1E3EG_U_G9 U_GND_FLOAT U_CL__CLAMP U_CLAW_CLAMP U_GND_FLOAT 1E-3LX_U_U20 U_VEE_CLP N5508231 U_N471660 U_GND_FLOAT VCVS_LIMIT PARAMS:!+ GAIN=100 VPOS=6000 VNEG=-60009X_U_U28 U_N5907151 U_IN+_U23 V I E20 E32 VTH_ORT9X_U_U27 U_IN+_U22 U_N5907581 V I E20 E32 VTH_ORTLX_U_U19 U_VCC_CLP N5508231 U_N471640 U_GND_FLOAT VCVS_LIMIT PARAMS:!+ GAIN=100 VPOS=6000 VNEG=-6000DG_U_G_VCCS6 U_GND_FLOAT U_N161534 U_VSENSE U_GND_FLOAT 1E-6,V_U_V9A3 U_N6340887 U_N6340901 3VDC@G_U_GSOURCING V+ U_GND_FLOAT U_N11154 U_GND_FLOAT 0.001?G_U_G_VCCS12 U_PSRR_P U_GND_FLOAT V+ U_GND_FLOAT -200N@G_U_G8 U_GND_FLOAT U_CLAW_CLAMP U_V_P1 U_GND_FLOAT 1E-3%C_U_C6 0 U_N03790 1 TC=0,0DX_U_U_R101 U_N03739 U_N03790 R_NOISELESS PARAMS: ROHMS=1E6DG_U_G_VCCS10 U_GND_FLOAT U_V_P1 U_N213578 U_GND_FLOAT -1E-3IX_U_U_RINN U_GND_FLOAT U_IN-_CMRR R_NOISELESS PARAMS: ROHMS=2E8+E_U_E34 U_GND_FLOAT 0 U_N03790 0 1LG_U_G_VCCS7 U_N5766729 U_GND_FLOAT U_N6302398 U_GND_FLOAT 501.1872n*X_S5 OD_N GND N00171 DRV SCHEMATIC4_S5KX_U9 N5479773 IA_IN- N5483022 COMP_BASIC_GEN_0 PARAMS: VDD=1 VEE=0LX_U11 N5481224 IA_IN+ N5482568 COMP_BASIC_GEN_0 PARAMS: VDD=1 VEE=0PX_U13 N5482568 N5482719 N5483967 OR2_BASIC_GEN_SAN PARAMS: VDD=1 VEE=0 + VTH=0.5$I_I1 N5436686 OD_N DC 1UADCLX_U12 IA_IN+ N5481244 N5482719 COMP_BASIC_GEN_0 PARAMS: VDD=1 VEE=00X_S2 V_E32_E20 GND IMON N00380 SCHEMATIC4_S2 V_V1 N5436686 DGND 5VDC)X_S3 V GND N5431182 SET SCHEMATIC4_S3!V_V4 N5481224 GND -17VDCNX_U16 N5492367 N5492345 N5492457 COMP_BASIC_GEN_0 PARAMS: VDD=1 VEE=00*X_F1 N00167 N00171 GND N00380 SCHEMATIC4_F13X_F1 N00167 N00171 GND N00380_3db SCHEMATIC4_F1%L3db N00380_3db 3db_internal 280nRrdb 3db_internal GND 1&G3db GND N00380 N00380_3db GND 10m!V_V2 N5479773 GND -17VDC V_V5 N5481244 GND 17VDCPX_U15 N5483967 N5483646 N5485548 OR2_BASIC_GEN_SAN PARAMS: VDD=1 VEE=0 + VTH=0.5NX_U17 N5492345 N5492393 N5492465 COMP_BASIC_GEN_0 PARAMS: VDD=1 VEE=0IX_U7 N5476524 I I_E32_E20 OR2_BASIC_GEN_SAN PARAMS: VDD=1 VEE=0 + VTH=0.50X_U3 M1 M2 GND E32 V I E20 MODE_CONTROLLX_U10 IA_IN- N5480030 N5483331 COMP_BASIC_GEN_0 PARAMS: VDD=1 VEE=0#R_R1 DGND OD_N 2E6 TC=0,05R_U1_R1 U1_VCC_CLP U1_GND_FLOAT 100K TC=0,0-V_U1_V2 U1_N5776299 U1_IN+_CMRR 500U2L_U1_LPSR2 U1_PSRR_N U1_N5755616 14.183M)C_U1_C6 0 U1_N5891488 1 TC=0,0PX_U1_U_RINP1 U1_N5752941 U1_N5752949 R_NOISELESS PARAMS: ROHMS=133.33K5R_U1_R2 U1_VEE_CLP U1_GND_FLOAT 100K TC=0,06R_U1_RPSR2 U1_GND_FLOAT U1_N5755616 1 TC=0,07R_U1_R5 U1_N5777596 U1_CLAW_CLAMP 0.01 TC=0,0X_U1_U1_U2A U1_U1_N4230891 U1_U1_N4230147 DIODE_IDEAL8C_U1_U1_C21 U1_U1_OL- U1_GND_FLOAT 10P TC=0,0AR_U1_U1_R22A U1_U1_N648965 U1_U1_IN_STAGE_IN- 10 TC=0,09C_U1_U1_C23 U1_GND_FLOAT U1_U1_VCLP 10P TC=0,0R_U1_U1_R4 U1_U1_N356503 U1_U1_CL__CLAMP 0.01 TC=0,09R_U1_U1_R33 U1_U1_VCLP U1_U1_N5809273 1K TC=0,0NG_U1_U1_G9 U1_GND_FLOAT U1_U1_CL__CLAMP U1_U1_CLAW_CLAMP U1_GND_FLOAT+ 1E-3@R_U1_U1_R70 U1_U1_IN_STAGE_IN+ U1_U1_N4208914 1 TC=0,0MX_U1_U1_U26 U1_U1_IN_STAGE_IN+ U1_U1_IN_STAGE_IN- U1_U1_IN_STAGE_OUT>+ U1_GND_FLOAT VCCS_LIMIT PARAMS: GAIN=-10 IPOS=.5 INEG=-.5IX_U1_U1_U21 U1_U1_N318039 U1_U1_VIMON U1_U1_N342546 U1_GND_FLOAT5+ VCVS_LIMIT PARAMS: GAIN=100 VPOS=6000 VNEG=-60006R_U1_U1_R25 U1_U1_N342546 U1_U1_SC- 1 TC=0,0FX_U1_U1_U_R106 U1_U1_N161534 U1_GND_FLOAT R_NOISELESS PARAMS: + ROHMS=1E6IX_U1_U1_U19 U1_U1_VCC_CLP U1_N5760679 U1_U1_N471640 U1_GND_FLOAT5+ VCVS_LIMIT PARAMS: GAIN=100 VPOS=6000 VNEG=-6000CC_U1_U1_C16 U1_U1_VEE_CLP_ACTIVE U1_GND_FLOAT 10P TC=0,0>C_U1_U1_C13 U1_U1_CLAW_CLAMP U1_GND_FLOAT 1F TC=0,0BX_U1_U1_S9 U1_GND_FLOAT U1_U1_CL1 U1_U1_OVER_CLAMP U1_U1_V_S14+ SCHEMATIC1_U1_U1_S98C_U1_U1_C17 U1_GND_FLOAT U1_U1_SC+ 10P TC=0,0LX_U1_U1_U28 U1_GND_FLOAT U1_U1_N318039 V I E20 E32 CURRENT_LIMIT_IA?R_U1_U1_R22 U1_U1_N57948 U1_U1_IN_STAGE_IN+ 10 TC=0,0NE_U1_U1_E_VCVS4 U1_U1_N57948 U1_GND_FLOAT U1_U1_N49600 U1_GND_FLOAT 16R_U1_U1_R19 U1_U1_N336076 U1_U1_SC+ 1 TC=0,0AR_U1_U1_R14 U1_U1_N471640 U1_U1_VCC_CLP_ACTIVE 1 TC=0,0,R_U1_R21 U1_N5827094 V+ 1E6 TC=0,05C_U1_C14 U1_GND_FLOAT U1_N5835188 1 TC=0,0=C_U1_C12 U1_GND_FLOAT U1_VCC_CLP_ACTIVE 10P TC=0,0MX_U1_U_RINN U1_GND_FLOAT U1_N5752941 R_NOISELESS PARAMS: ROHMS=200KPE_U1_E_VCVSCM U1_N5756014 U1_N5763154 U1_N5755906 U1_GND_FLOAT 316.22771X_U1_U26 U1_N5752941 U1_N5752949 FEMT_IA&E_U1_E28 U1_N5891626 0 V- 0 1EE_U1_E36 U1_N5835248 U1_GND_FLOAT U1_N5835188 U1_GND_FLOAT 1OX_U1_S5 U1_GND_FLOAT U1_VCC_CLP_ACTIVE U1_N5777562 U1_N5777596 IA_SCH_U1_S5EG_U1_G1 N5431182 U1_GND_FLOAT U1_CLAW_CLAMP U1_GND_FLOAT -1M.R_U1_R20 IA_IN+ U1_N5752949 1 TC=0,09R_U1_U2_R29 U1_U2_OVER_CLAMP U1_U2_CL1 1 TC=0,0PE_U1_U2_E_VCVS3 U1_U2_OSTG1 U1_GND_FLOAT U1_U2_CL__CLAMP U1_GND_FLOAT 1?R_U1_U2_R6 U1_U2_N403302 U1_U2_OVER_CLAMP 0.01 TC=0,0=C_U1_U2_C9 U1_U2_N11675 U1_GND_FLOAT 10E-12 TC=0,08C_U1_U2_C22 U1_GND_FLOAT U1_U2_CL1 10P TC=0,0KX_U1_U2_U_R103 U1_U2_IN_STAGE_OUT U1_GND_FLOAT R_NOISELESS PARAMS: + ROHMS=1E6'V_U1_U2_V8 U1_U2_VEE_CLP V- 3V;R_U1_U2_R23 U1_U2_N10869 U1_GND_FLOAT 10E3 TC=0,00R_U1_U2_R72 RG2 U1_U2_N51073 1K TC=0,09R_U1_U2_R34 U1_U2_VCLP U1_U2_N5813826 1K TC=0,0NG_U1_U2_G8 U1_GND_FLOAT U1_U2_CLAW_CLAMP U1_U2_V_P1 U1_GND_FLOAT 1E-3>X_U1_U2_U2A U1_U2_N4230891 U1_U2_N4230147 DIODE_IDEAL8C_U1_U2_C21 U1_U2_OL- U1_GND_FLOAT 10P TC=0,0AR_U1_U2_R22A U1_U2_N648965 U1_U2_IN_STAGE_IN- 10 TC=0,09C_U1_U2_C23 U1_GND_FLOAT U1_U2_VCLP 10P TC=0,0R_U1_U2_R4 U1_U2_N356503 U1_U2_CL__CLAMP 0.01 TC=0,09R_U1_U2_R33 U1_U2_VCLP U1_U2_N5809273 1K TC=0,0NG_U1_U2_G9 U1_GND_FLOAT U1_U2_CL__CLAMP U1_U2_CLAW_CLAMP U1_GND_FLOAT+ 1E-3@R_U1_U2_R70 U1_U2_IN_STAGE_IN+ U1_U2_N4208914 1 TC=0,0MX_U1_U2_U26 U1_U2_IN_STAGE_IN+ U1_U2_IN_STAGE_IN- U1_U2_IN_STAGE_OUT>+ U1_GND_FLOAT VCCS_LIMIT PARAMS: GAIN=-10 IPOS=.5 INEG=-.5IX_U1_U2_U21 U1_U2_N318039 U1_U2_VIMON U1_U2_N342546 U1_GND_FLOAT5+ VCVS_LIMIT PARAMS: GAIN=100 VPOS=6000 VNEG=-60006R_U1_U2_R25 U1_U2_N342546 U1_U2_SC- 1 TC=0,0FX_U1_U2_U_R106 U1_U2_N161534 U1_GND_FLOAT R_NOISELESS PARAMS: + ROHMS=1E6LX_U1_U2_U19 U1_U2_VCC_CLP RG2 U1_U2_N471640 U1_GND_FLOAT VCVS_LIMIT*+ PARAMS: GAIN=100 VPOS=6000 VNEG=-6000CC_U1_U2_C16 U1_U2_VEE_CLP_ACTIVE U1_GND_FLOAT 10P TC=0,0>C_U1_U2_C13 U1_U2_CLAW_CLAMP U1_GND_FLOAT 1F TC=0,0BX_U1_U2_S9 U1_GND_FLOAT U1_U2_CL1 U1_U2_OVER_CLAMP U1_U2_V_S14+ SCHEMATIC1_U1_U2_S98C_U1_U2_C17 U1_GND_FLOAT U1_U2_SC+ 10P TC=0,0LX_U1_U2_U28 U1_GND_FLOAT U1_U2_N318039 V I E20 E32 CURRENT_LIMIT_IA?R_U1_U2_R22 U1_U2_N57948 U1_U2_IN_STAGE_IN+ 10 TC=0,0NE_U1_U2_E_VCVS4 U1_U2_N57948 U1_GND_FLOAT U1_U2_N49600 U1_GND_FLOAT 16R_U1_U2_R19 U1_U2_N336076 U1_U2_SC+ 1 TC=0,0AR_U1_U2_R14 U1_U2_N471640 U1_U2_VCC_CLP_ACTIVE 1 TC=0,0GG_U1_G2 U1_CLAW_CLAMP U1_GND_FLOAT U1_N5766497 U1_GND_FLOAT -1IX_U1_U19 U1_VCC_CLP N5431182 U1_N5777562 U1_GND_FLOAT VCVS_LIMIT*+ PARAMS: GAIN=100 VPOS=6000 VNEG=-6000JG_U1_G_VCCS7 U1_N5755906 U1_GND_FLOAT U1_IN+_CMRR U1_GND_FLOAT 1N-C_U1_C15 V- U1_GND_FLOAT 1N TC=0,09R_U1_R16 U1_N5777576 U1_VEE_CLP_ACTIVE 1 TC=0,0.R_U1_R18 IA_IN- U1_N5752941 1 TC=0,0&E_U1_E29 U1_N5891482 0 V+ 0 15C_U1_C13 U1_GND_FLOAT U1_N5827094 1 TC=0,07C_U1_C19 U1_GND_FLOAT N5431182 31.82P TC=0,0GG_U1_G_VCCS12 U1_PSRR_P U1_GND_FLOAT V+ U1_GND_FLOAT -794.328N0E_U1_E34 U1_GND_FLOAT 0 U1_N5891488 0 17R_U1_RCM2 U1_GND_FLOAT U1_CLAW_CLAMP 1 TC=0,0*V_U1_V7 U1_N5833465 U1_VCC_CLP 3V@X_U1_F1 U1_N5760679 RG1 U1_N5766223 U1_N5766497 IA_SCH_U1_F13L_U1_LPSR1 U1_PSRR_P U1_N5755810 5.03228M;C_U1_CINPCM U1_N5752949 U1_GND_FLOAT 2.5P TC=0,0KX_U1_U_R101 U1_N5891482 U1_N5891488 R_NOISELESS PARAMS: ROHMS=1E66R_U1_RCM1 U1_GND_FLOAT U1_N5766497 1K TC=0,0:C_U1_CDIFF U1_N5752941 U1_N5752949 3.75P TC=0,06R_U1_RPSR1 U1_GND_FLOAT U1_N5755810 1 TC=0,0*V_U1_V8 U1_VEE_CLP U1_N5835248 3VKX_U1_U_R102 U1_N5891488 U1_N5891626 R_NOISELESS PARAMS: ROHMS=1E6GG_U1_G_VCCS13 U1_PSRR_N U1_GND_FLOAT V- U1_GND_FLOAT -794.328NEE_U1_E35 U1_N5833465 U1_GND_FLOAT U1_N5827094 U1_GND_FLOAT 11X_U1_U27 U1_N5752949 U1_IN+_CMRR VNSE_IAIX_U1_U20 U1_VEE_CLP N5431182 U1_N5777576 U1_GND_FLOAT VCVS_LIMIT*+ PARAMS: GAIN=100 VPOS=6000 VNEG=-6000-C_U1_C18 V+ U1_GND_FLOAT 1N TC=0,0OX_U1_S6 U1_VEE_CLP_ACTIVE U1_GND_FLOAT U1_N5777596 U1_N5777576 IA_SCH_U1_S6;C_U1_CINNCM U1_GND_FLOAT U1_N5752941 2.5P TC=0,0.SUBCKT INV_BASIC_GEN_SAN_0 IN Y PARAMS: VDD=1 VEE=0 VTH=0.5GE_ABM Y 0 VALUE = {((VDD+VEE)/2)-((VDD-VEE)/2)*TANH(10E6*(V(IN)-VTH))}.ENDS INV_BASIC_GEN_SAN_0'*VOLTAGE CONTROLLED SOURCE WITH LIMITS*$0.SUBCKT VTH_ORT VOUT+ VOUT- V_M I_M EXT20 EXT32*JE1 VOUT+ VOUT- VALUE={((V(V_M)*12)+(V(I_M))+(V(EXT20)*12)+(V(EXT32)*12))}.ENDS*$'*VOLTAGE CONTROLLED SOURCE WITH LIMITS:.SUBCKT CURRENT_LIMIT_IA VOUT+ VOUT- V_M I_M EXT20 EXT32*UE1 VOUT+ VOUT- VALUE={0.5*((V(V_M)*4.5)+(V(I_M)*7.2)+(V(EXT20)*4.5)+(V(EXT32)*7.2))}.ENDS CURRENT_LIMIT_IA*TWO INPUT OR GATE@.SUBCKT OR2_BASIC_GEN_SAN IN1 IN2 Y PARAMS: VDD=1 VEE=0 VTH=0.5FE1 Y 0 VALUE ={(((VDD+VEE)/2)+ ((VDD-VEE)/2)*TANH((V(IN1,0)-VTH)*1E6)K+) + (((VDD+VEE)/2)+((VDD-VEE)/2)*TANH((V(IN2,0)-VTH)*1E6))-((((VDD+VEE)/2g+)+ ((VDD-VEE)/2)*TANH((V(IN1,0)-VTH)*1E6)) * (((VDD+VEE)/2)+((VDD-VEE)/2)*TANH((V(IN2,0)-VTH)*1E6)))}.ENDS OR2_BASIC_GEN_SAN**BASIC COMPARATOR8.SUBCKT COMP_BASIC_GEN_0 INP INM Y PARAMS: VDD=1 VEE=0KE_ABM Y 0 VALUE = {((VDD+VEE)/2)+((VDD-VEE)/2)*TANH(10E6*(V(INP)-V(INM)))}.ENDS COMP_BASIC_GEN_0'*VOLTAGE CONTROLLED SOURCE WITH LIMITS0.SUBCKT EFLD_SIG VOUT+ VOUT- V_M I_M VIMON DRV*;E1 VOUT+ VOUT- VALUE={((V(V_M)*V(VIMON))+(V(I_M)*V(DRV)))}.ENDS EFLD_SIG'*VOLTAGE CONTROLLED SOURCE WITH LIMITS*$&.SUBCKT EFLD_VTH VOUT+ VOUT- V_M I_M*4E1 VOUT+ VOUT- VALUE={((V(V_M)*20)+(V(I_M)*18.72))}.ENDS EFLD_VTH*$!* BEGIN PROG NSE FEMTO AMP/RT-HZ.SUBCKT FEMT_OPA 1 2.* BEGIN SETUP OF NOISE GEN - FEMPTOAMPS/RT-HZ* INPUT THREE VARIABLES* SET UP INSE 1/F* FA/RHZ AT 1/F FREQ.PARAM NLFF=8960* FREQ FOR 1/F VAL.PARAM FLWF=340* SET UP INSE FB* FA/RHZ FLATBAND.PARAM NVRF=3530* END USER INPUT* START CALC VALS'.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164} .PARAM RNVF={1.184*PWR(NVRF,2)}1.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16* END CALC VALS I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVNF D2 8 0 DVNFE1 3 6 7 8 {GLFF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10R4 5 0 {RNVF}R5 5 0 {RNVF} R6 3 4 1E9 R7 4 0 1E9G1 1 2 3 4 1E-6 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS* END PROG NSE FEMTO AMP/RT-HZ!* BEGIN PROG NSE NANO VOLT/RT-HZ.SUBCKT VNSE_OPA 1 2,* BEGIN SETUP OF NOISE GEN - NANOVOLT/RT-HZ* INPUT THREE VARIABLES* SET UP VNSE 1/F* NV/RHZ AT 1/F FREQ.PARAM NLF=1M* FREQ FOR 1/F VAL.PARAM FLW=10* SET UP VNSE FB* NV/RHZ FLATBAND.PARAM NVR=39* END USER INPUT* START CALC VALS$.PARAM GLF={PWR(FLW,0.25)*NLF/1164}.PARAM RNV={1.184*PWR(NVR,2)}0.MODEL DVN D KF={PWR(FLW,0.25)/1E11} IS=1.0E-16* END CALC VALS I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVN D2 8 0 DVNE1 3 6 7 8 {GLF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10 R4 5 0 {RNV} R5 5 0 {RNV} R6 3 4 1E9 R7 4 0 1E9 E3 1 2 3 4 1 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS* END PROG NSE NANOV/RT-HZ!* BEGIN PROG NSE FEMTO AMP/RT-HZ.SUBCKT FEMT_IA 1 2.* BEGIN SETUP OF NOISE GEN - FEMPTOAMPS/RT-HZ* INPUT THREE VARIABLES* SET UP INSE 1/F* FA/RHZ AT 1/F FREQ.PARAM NLFF=8960* FREQ FOR 1/F VAL.PARAM FLWF=340* SET UP INSE FB* FA/RHZ FLATBAND.PARAM NVRF=3530* END USER INPUT* START CALC VALS'.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164} .PARAM RNVF={1.184*PWR(NVRF,2)}1.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16* END CALC VALS I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVNF D2 8 0 DVNFE1 3 6 7 8 {GLFF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10R4 5 0 {RNVF}R5 5 0 {RNVF} R6 3 4 1E9 R7 4 0 1E9G1 1 2 3 4 1E-6 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS* END PROG NSE FEMTO AMP/RT-HZ!* BEGIN PROG NSE NANO VOLT/RT-HZ.SUBCKT VNSE_IA 1 2,* BEGIN SETUP OF NOISE GEN - NANOVOLT/RT-HZ* INPUT THREE VARIABLES* SET UP VNSE 1/F* NV/RHZ AT 1/F FREQ.PARAM NLF=22* FREQ FOR 1/F VAL.PARAM FLW=32* SET UP VNSE FB* NV/RHZ FLATBAND.PARAM NVR=9.2* END USER INPUT* START CALC VALS$.PARAM GLF={PWR(FLW,0.25)*NLF/1164}.PARAM RNV={1.184*PWR(NVR,2)}/.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16* END CALC VALS I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVN D2 8 0 DVNE1 3 6 7 8 {GLF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10 R4 5 0 {RNV} R5 5 0 {RNV} R6 3 4 1E9 R7 4 0 1E9 E3 1 2 3 4 1 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS* END PROG NSE NANOV/RT-HZ'*VOLTAGE CONTROLLED SOURCE WITH LIMITS1.SUBCKT ICL_OPA VOUT+ VOUT- V_M I_M EXT20 EXT32*ME1 VOUT+ VOUT- VALUE={((V(V_M)*20)+(V(I_M)*32)+(V(EXT20)*20)+(V(EXT32)*32))}.ENDS ICL_OPA*$DGNDDRVEFCMEFLDEFOTGNDIA_IN+IA_IN-IAOUTIMONM1M2OD_NRG1RG2SETV+V-VINBfT_23BBEB4020120629175542 NOPCB (GND)BfT_23BBE56020120629175542 NOPCB (GND)BfT_057C0ED020120803143310 NOPCB (GND)BfT_115B96D020120803143312 NOPCB (GND)BfXT_115B9CB020120803143315 NOPCB (GND)BfT_115BA29020120803143324 NOPCB (GND)BfXT_0965B9D020120803144559 NOPCB (GND)BfXT_0965C59020120803144601 NOPCB (GND)Bf T_04B3243020120803150509 NOPCB (GND)Bf`T_04B5705020120803150512 NOPCB (GND)8?H ]@P"MbP??ư>*'d@Y@VIN[dddd??.A.A.AeAMbP?@@?a2U0*c?J4q?ư> $ 4@D@ =B?& .>??ư>ư>ư>ư>ư>ư>?I@?I@?I@& .>#i;@& .>-q=ư>MbP?-q=MbP?vIh%<=@@D@& .>?MbP?4@?{Gz?ꌠ9Y>)F@?+= _BKH9$@Y@& .>ư>?.AMbP??????I@Default analysis parameters. These parameters establish convergence and sufficient accuracy for most circuits. In case of convergence or accuracy problems click on the "hand " button to Open other parameter sets.?Xd I@nMbP?{Gz?{Gz?MbP????|=Hz>}Ô%ITNoname